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Kurzfassung  
Die vorliegende Arbeit untersucht den Einsatz von Large Language 
Models (LLMs) zur Extraktion strukturierter Rechnungsdaten aus ma-
schinenlesbaren PDF-Dokumenten im Kontext der aifinyo AG. Ziel ist 
es, die Genauigkeit und Robustheit moderner LLM-Ansätze mit der 
bestehenden OCR-basierten Lösung von Gini zu vergleichen, die der-
zeit im produktiven Einsatz ist. Dazu wird eine empirische Studie 
durchgeführt, in der verschiedene LLMs (Gemma, GPT-4, Claude) un-
ter identischen Bedingungen getestet und mit manuell bereinigten 
Referenzdaten sowie historischen OCR-Ergebnissen verglichen wer-
den. Der Fokus liegt auf der präzisen Extraktion geschäftskritischer 
Kernfelder wie Rechnungsnummer, Rechnungsdatum und Betrag. Er-
gänzend werden Strategien wie Zero-Shot-, Few-Shot- und Chain-of-
Thought-Prompting sowie der Einfluss unterschiedlicher Textextrakti-
onsbibliotheken untersucht, um Optimierungspotenziale und techni-
sche Machbarkeit zu bewerten. Die Ergebnisse zeigen, dass LLMs bei 
variablen Rechnungs-Layouts erkennbar bessere Erkennungsraten er-
zielen können und einen vielversprechenden Ansatz für die zukünftige 
Automatisierung der Rechnungsverarbeitung darstellen. 
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 • Zero-Shot und Few-Shot Prompting 

 • Finanzautomatisierung / FinTech 
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Abstract  
This thesis investigates the use of Large Language Models (LLMs) for 
extracting structured invoice data from machine-readable PDF docu-
ments in the context of aifinyo AG. The primary goal is to compare 
the accuracy and robustness of modern LLM-based approaches with 
the currently deployed OCR-based solution from Gini. An empirical 
study is conducted in which multiple LLMs (Gemma, GPT-4, Claude) 
are evaluated under identical conditions and benchmarked against 
manually curated reference data as well as historical OCR results. The 
focus is on accurately extracting business-critical key fields such as 
invoice number, invoice date, and total amount. Additionally, strate-
gies like Zero-Shot, Few-Shot, and Chain-of-Thought prompting, as 
well as the impact of different text extraction libraries, are examined 
to assess optimization potential and technical feasibility. The findings 
demonstrate that LLMs achieve noticeably better extraction accuracy 
for invoices with variable layouts, indicating strong potential for future 
automation of invoice processing. 

Keywords 
 • Invoice data extraction 

 • Large Language Models (LLMs) 

 • Document processing 

 • Zero-Shot and Few-Shot Prompting 

 • Financial process automation / FinTech 
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1 Einleitung 

Die fortschreitende Digitalisierung von Geschäftsprozessen führt in nahezu allen 
Branchen zu einer stetig wachsenden Menge an strukturierten und unstrukturier-
ten Daten, die automatisiert verarbeitet werden können. Im Finanzdienstleis-
tungsbereich nimmt die zuverlässige Extraktion von Rechnungsdaten eine zent-
rale Rolle ein, da sie die Grundlage für nachgelagerte Schritte wie 
Zahlungsfreigaben, Risikoprüfungen, Finanzbuchhaltung und Mahnwesen bildet. 
Fehlerhafte oder unvollständige Datenerkennung verursacht Verzögerungen, er-
höht den manuellen Nachbearbeitungsaufwand und bringt finanzielle sowie 
rechtliche Risiken mit sich [1]. 

Moderne Large Language Models (LLMs) eröffnen neue Möglichkeiten der kon-
textsensitiven Verarbeitung natürlicher Sprache und bieten dabei eine höhere 
Flexibilität und Präzision als klassische Verfahren. Diese Flexibilität ist besonders 
für Unternehmen wie die aifinyo AG relevant, die mit den in Abschnitt 1.1 be-
schriebenen Herausforderungen konfrontiert sind. 

Für diese Arbeit entstehen zwei Datensätze. Der erste ist ein gezielt kuratierter 
Developmentdatensatz mit besonders anspruchsvollen Rechnungsdokumenten, 
der zweite ein zufällig gezogener Evaluationsdatensatz, der das reale Belegauf-
kommen abbildet. Zentrales Werkzeug bildet eine eigens entwickelte Evaluations-
platform, die die automatisierte Durchführung und Auswertung von Extraktions-
experimenten ermöglicht. Mit ihr lassen sich verschiedene LLM-Strategien und 
Prompting-Varianten untersuchen und die Ergebnisse sowohl untereinander als 
auch im Vergleich zur bei aifinyo etablierten Rechnungs-OCR-Lösung von Gini 
analysieren. Die Evaluation verdeutlicht, dass LLMs die Genauigkeit bei der Ex-
traktion der Kernfelder steigern und den Bedarf an manueller Nachbearbeitung 
verringern können, gleichzeitig jedoch neue Herausforderungen und Risiken ent-
stehen. 

Zunächst folgen die theoretischen Grundlagen und der Forschungskontext. Da-
rauf baut die Beschreibung der im Rahmen dieser Arbeit entwickelten Evaluati-
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onsplatform auf, über die die Experimente automatisiert durchgeführt und aus-
gewertet werden. Anschließend wird die konkrete Durchführung der Untersu-
chungen erläutert, bevor die zentralen Ergebnisse vorgestellt und abschließend 
eingeordnet sind. 

1.1  Motivation und Problemstellung 

Diese Arbeit entsteht in Zusammenarbeit mit der aifinyo AG, einem Berliner Fin-
Tech. Grundlage sind die dort verfügbaren Rechnungsinformationen sowie im 
Unternehmensalltag beobachtete Herausforderungen bei der Erfassung einge-
hender Rechnungen. Die aifinyo AG verarbeitet derzeit monatlich rund 15.000 
Rechnungen auf Basis automatischer Texterkennung (OCR), ergänzt durch ma-
nuelle Validierung und Korrektur. Die Wirkung nachgelagerter, stark automati-
sierter Prozesse wird jedoch dadurch begrenzt, dass die Erfassung der Rech-
nungsdaten häufig unzuverlässig ist. 

Hauptursachen sind uneinheitliche Layouts, komplexe Formatierungen und un-
terschiedliche Darstellungen von Beträgen (z. B. Brutto-/Nettosummen oder ent-
haltene Abschläge). Dies erfordert eine kontinuierliche manuelle Kontrolle und 
Korrektur und bindet ein festes Team von vier bis fünf Mitarbeitenden mit ent-
sprechenden Kosten und verlängerten Durchlaufzeiten. Seit 2016 setzt das Un-
ternehmen die Rechnungsdaten-Extraktionslösung der Gini GmbH ein, um zent-
rale Rechnungsfelder automatisiert zu erkennen. 

Vor diesem Hintergrund untersucht die Arbeit, inwieweit Large Language Models 
(LLMs) eine präzisere und robustere Extraktion zentraler Rechnungsparameter 
ermöglichen und damit eine praktikable Alternative oder Ergänzung zu bestehen-
den OCR-basierten Lösungen darstellen. 

1.2 Herausforderungen traditioneller OCR-basierter 
Systeme 

Klassische OCR-Ansätze extrahieren Text primär über visuelle Mustererkennung 
und statische Layoutregeln, also sequenziell. Sie liefern bei standardisierten und 
klar strukturierten Belegen in der Regel zuverlässige Ergebnisse, stoßen jedoch 



3 
 

an Grenzen, wenn Layouts stark variieren, Feldbezeichnungen uneinheitlich sind 
oder komplexe Dokumentstrukturen vorliegen [2]. 

Auch maschinenlesbare PDFs mit eingebettetem Text sind nicht frei von Proble-
men, etwa wenn die interne Zeichenkodierung uneinheitlich ist oder die Segmen-
tierung der Inhalte nicht der visuellen Struktur des Dokuments entspricht. Die 
Folgen sind Unstimmigkeiten in den extrahierten Daten, die sich in nachgelager-
ten Prozessen vervielfachen können. Besonders kritisch ist dabei, dass fehler-
hafte, aber formal plausible Werte unbemerkt weiterverarbeitet werden können 
und so eine Dunkelziffer an verdeckten Prozessfehlern entsteht. Selbst kleine Er-
kennungsfehler können beispielsweise dazu führen, dass Rechnungen nicht au-
tomatisiert weiterverarbeitet werden oder in falsche Prozesspfade gelangen. 

1.3  Potenzial von Large Language Models 

LLMs bieten eine grundlegend andere Herangehensweise an die Extraktion von 
Rechnungsdaten. Sie verarbeiten Text nicht nur sequenziell, sondern kontextba-
siert, und können Bedeutungszusammenhänge auch ohne explizite Layoutinfor-
mationen erkennen. Durch gezieltes Prompting lassen sich Modelle an unter-
schiedliche Dokumentvarianten anpassen, ohne für jede Layoutabweichung 
eigene Regeln oder Trainingsdaten bereitzustellen [3]. 

Erste Erfolge in verwandten Domänen wie dem Kundenservice [4], der maschi-
nellen Übersetzung [5] oder der automatisierten Analyse juristischer Texte [6] 
zeigen, dass LLMs selbst komplexe semantische Abhängigkeiten zuverlässig er-
fassen können. Diese Anwendungsfelder sind zudem häufig stark regelbasiert 
und standardisiert, was die Übertragbarkeit auf strukturierte Extraktionsaufgaben 
unterstützt. Eine Anwendung für die standardisierte Erkennung zentraler Rech-
nungsparameter liegt daher nahe. So lassen sich unter anderem Rechnungsnum-
mer, Rechnungsdatum, Bruttobetrag, Steuersätze und Debitor auch aus unter-
schiedlich strukturierten Dokumenten präzise extrahieren, ohne auf aufwendige 
Template- oder Regelpflege angewiesen zu sein.  
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2 Forschungsfrage und Zielsetzung 

Die fortschreitende Entwicklung von LLMs eröffnet vollkommen neue Möglichkei-
ten für die automatisierte Dokumentenverarbeitung und stellt Unternehmen an-
gesichts der steigenden Notwendigkeit digitaler Transformation vor die Frage, ob 
etablierte Rechnungs-OCRs auch künftig eine verlässliche Lösung darstellen oder 
ob LLM-basierte Ansätze in Zukunft erfolgversprechender sind. Während etab-
lierte Dokumentenverarbeitungssysteme auf der Trennung von Textextraktion 
und semantischer Interpretation basieren, ermöglichen LLMs die kontextuelle 
Verarbeitung von Dokumenteninhalten ohne explizite Layout-Analyse. 

Die vorliegende Arbeit beleuchtet dies anhand der Rechnungsverarbeitung bei 
der aifinyo AG. Im Mittelpunkt steht dabei die Frage, ob moderne LLM-Ansätze 
tatsächlich bessere Ergebnisse liefern als das seit Jahren verwendete Rechnungs-
OCR von gini und welches Verbesserungspotenzial sich daraus nachweisen lässt. 

Methodisch folgt die Untersuchung den etablierten Prinzipien empirischer Soft-
wareengineering-Forschung. Dazu werden identische Rechnungsdokumente 
durch verschiedene LLM-basierte Ansätze verarbeitet und die daraus resultieren-
den Ergebnisse sowohl mit manuell geprüften Referenzdaten als auch mit den 
historischen Gini-OCR-Ergebnissen verglichen. Dieses Vergleichsdesign ermög-
licht eine objektive Bewertung unter realistischen Geschäftsbedingungen und lie-
fert sowohl quantitative Leistungsmessungen als auch Einblicke in praktische Im-
plementierungsherausforderungen. 

2.1  Primäre Forschungsfrage 

Die beschriebene Ausgangslage führt zu einer zweigeteilten Forschungsfrage, die 
sowohl die grundsätzliche Auslesequalität von LLMs als auch deren praktischen 
Nutzen im direkten Vergleich untersucht: 

F1: Wie präzise extrahieren Large Language Models strukturierte Daten aus ma-
schinenlesbaren Rechnungs-PDFs? 

F2: Inwiefern übertreffen sie dabei die durch das Rechnungs-OCR von gini er-
reichten Ergebnisse, und welche quantifizierbaren Performance-Unterschiede las-
sen sich empirisch nachweisen? 
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Diese zweigeteilte Fragestellung untersucht sowohl die Leistungsfähigkeit von 
LLMs als auch deren praktischen Nutzen im direkten Vergleich. Um methodisch 
saubere Vergleichsbedingungen zu schaffen, konzentriert sich die Evaluation auf 
textbasierte PDF-Dokumente. Diese Fokussierung eliminiert OCR-Textextrakti-
onsfehler als Störvariable, da bei digital generierten PDFs der exakte Originaltext 
verfügbar ist, wodurch sich reine Interpretationsfehler von optischen Auslesefeh-
lern trennen lassen. 

2.1.1  Fokus auf Genauigkeitsverbesserung 

Um diese Fragen beantworten zu können, liegt der Fokus vorwiegend auf der 
Extraktionsgenauigkeit als zentralem Bewertungskriterium. Konkret geht es da-
rum, welcher Ansatz Rechnungsnummern, Rechnungsbetrag und Rechnungsda-
tum zuverlässiger erkennt und dabei weniger Fehler macht. Weitere Kriterien wie 
Kosten, Tokenverbrauch oder Verarbeitungszeit werden zwar erhoben, sind je-
doch kein zentraler Bestandteil dieser Arbeit. 

Die Evaluation folgt dabei dem Black-Box-Ansatz [7], wobei nur das Endergebnis 
zählt und die interne Funktionalität des Systems nicht berücksichtigt wird. Diese 
Herangehensweise gewährleistet somit faire Vergleichsbedingungen zwischen 
den verschiedenen LLM-basierten Ansätzen und den historischen Extraktionsda-
ten des Rechnungs-OCRs. Die Leistungsmessung erfolgt durch Ermittlung der Ex-
traktionsgenauigkeit. Wie in Abbildung 2.1 gezeigt, stehen dabei die drei Kern-
felder Rechnungsnummer, Rechnungsdatum und Rechnungsbetrag im 
Mittelpunkt. Dabei wird transparent dokumentiert, dass auch die Referenzdaten 
nicht fehlerfrei sind. Menschliche Prüfer machen ebenfalls Fehler, und manche 
Rechnungsinhalte sind tatsächlich mehrdeutig interpretierbar. 

 
Abbildung 2.1 Black-Box-Ansatz zur Evaluation der Extraktionsgenauigkeit 
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2.1.2  Methodische Herausforderungen und Lösungs-
ansätze  

Eine zentrale Herausforderung dieser Arbeit liegt darin, dass die vorhandenen 
Infact-Referenzdaten menschliche Fehler, unterschiedliche Interpretationen und 
prozessbedingte Inkonsistenzen enthalten [8]. Für eine präzise Evaluation ist je-
doch ein möglichst fehlerfreier Referenzdatensatz erforderlich. 

Der Lösungsansatz verfolgt daher eine manuelle Bereinigung der Referenzdaten. 
Bei widersprüchlichen Fällen zwischen Infact-Daten und den besten verfügbaren 
Extraktionsergebnissen erfolgt eine manuelle Nachprüfung und Korrektur durch 
menschliche Experten. Dies gewährleistet die Erstellung eines qualitativ hochwer-
tigen Basis-Referenzdatensatzes. 

Weiterhin bestehen methodische Herausforderungen in Bezug auf die Konsistenz 
und Reproduzierbarkeit der LLM-Ausgaben. Selbst bei deterministischen Parame-
tereinstellungen (z. B. 0#.1#$%0*$#	 = 	0) ist eine gewisse Ergebnisvarianz nicht 
auszuschließen [9]. Dies kann methodisch die Durchführung mehrerer Wiederho-
lungsläufe pro Konfiguration erforderlich machen, um belastbare Aussagen zu 
ermöglichen. Zudem hängt die Qualität der Evaluationsdaten stark von der vor-
gelagerten PDF-Textextraktion ab, wobei sich fehlerhafte Segmentierung, inkon-
sistente Zeichencodierung oder unvollständige Erfassung unmittelbar auf die 
Leistung der Modelle auswirken [10]. Schließlich ergibt sich ein Trade-off zwi-
schen Genauigkeit, Laufzeit und Kosten. Während leistungsstarke Modelle ten-
denziell bessere Ergebnisse erzielen, sind sie zugleich mit höherem Ressourcen-
verbrauch verbunden. Diese Faktoren werden zwar erhoben, bilden jedoch nicht 
den zentralen Schwerpunkt der Arbeit. 

Diese Herangehensweise schafft eine solide Grundlage für objektive Vergleiche 
zwischen verschiedenen Extraktionsansätzen. Alle Bereinigungsschritte werden 
transparent dokumentiert, um die Nachvollziehbarkeit der Evaluationsergebnisse 
zu gewährleisten. 
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2.2  Spezifische Untersuchungsaspekte 

Zur Beantwortung der Forschungsfragen (Abschnitt 2.1) wird die Untersuchung 
in vier komplementäre Analysebereiche gegliedert, die gemeinsam eine systema-
tische Bewertung der Leistungsfähigkeit und Anwendbarkeit von LLMs für die 
Rechnungsdatenextraktion ermöglichen: 

1. Quantitative Performanceanalyse 

Im Fokus steht die Extraktionsgenauigkeit von LLMs im direkten Vergleich zu den 
historischen Gini-OCR-Ergebnissen. Bewertet wird die Korrektheit bei zentralen 
Rechnungsfeldern (Rechnungsnummer, -datum, Betrag) sowie die Gesamtper-
formance anhand der ermittelten Genauigkeit. 

2. Vergleichende Modellbewertung 

Verschiedene Modellfamilien (Gemma, Claude, GPT-4) werden unter identischen 
Bedingungen getestet. Ziel ist es, Unterschiede in Leistungsfähigkeit und Robust-
heit aufzuzeigen sowie Kriterien für die Modellauswahl abzuleiten. 

3. Untersuchung von Optimierungsstrategien 

Analysiert wird, inwiefern sich die Leistung von LLMs durch unterschiedliche 
Prompt-Engineering-Techniken steigern lässt. Dazu zählen Zero-Shot-, Few-Shot- 
und Chain-of-Thought-Prompting. Auf diese Weise werden systematisch Verbes-
serungspotenziale erfasst und praxisnahe Handlungsempfehlungen abgeleitet. 

4. Technische Implementierbarkeit 

Ergänzend werden nicht-funktionale Kriterien wie Tokenverbrauch, Verarbei-
tungszeiten und infrastrukturelle Anforderungen betrachtet. Diese Analyse erwei-
tert die reine Performancebewertung um Aspekte der praktischen Umsetzbarkeit 
und bildet die Grundlage für eine Handlungsempfehlung im Kontext der aifinyo 
AG.  
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2.3  Wissenschaftliche Hypothesen 

Basierend auf den definierten Untersuchungsbereichen werden die folgenden 
zentralen Hypothesenpaare für die empirische Evaluation aufgestellt. Die Nullhy-
pothesen (H0) werden im Verlauf der Studie überprüft, um sie gegebenenfalls 
zugunsten der entsprechenden Alternativhypothesen (HA) zu verwerfen: 

1.  Hypothesenpaar zur Layout-Robustheit 

Nullhypothese (H01): LLMs erzielen bei einer hohen Varianz unterschiedli-
cher Rechnungs-Layouts keine signifikant besseren Ergebnisse als das etab-
lierte Rechnungs-OCR. 

Alternativhypothese (HA1): LLMs erzielen bei einer hohen Varianz unter-
schiedlicher Rechnungs-Layouts signifikant bessere Ergebnisse als das etab-
lierte Rechnungs-OCR. 

2.  Hypothesenpaar zum Optimierungspotenzial 

Nullhypothese (H02): Der Einsatz von Prompt-Engineering (Zero-Shot, CoT 
und Few-Shot) führt zu keiner signifikanten Leistungssteigerung gegenüber 
einfachen LLM-Implementierungen. 

Alternativhypothese (HA2): Der Einsatz von Prompt-Engineering ( 
Zero-Shot, CoT und Few-Shot) führt zu einer signifikanten Leistungssteige-
rung gegenüber einfachen LLM-Implementierungen. 

3.  Hypothesenpaar zur Generalisierbarkeit 

Nullhypothese (H03): LLMs zeigen bei unabhängigen Evaluationsdatensät-
zen eine signifikant schlechtere Leistung als bei den in der Optimierungsphase 
genutzten Entwicklungsdaten. 

Alternativhypothese (HA3): LLMs zeigen bei unabhängigen Evaluationsda-
tensätzen eine vergleichbare oder bessere Leistung als bei den in der Opti-
mierungsphase genutzten Entwicklungsdaten. 

Die Ergebnisse der Untersuchung dienen dazu, diese Hypothesen zu überprüfen. 
Damit bilden sie sowohl die Grundlage für die wissenschaftliche Erkenntnisgewin-
nung als auch zentrale Entscheidungskriterien für eine spätere Einführung bei der 
aifinyo AG. 
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3 Anwendungskontext und Problemdomain 

Die vorliegende Untersuchung findet im Umfeld der aifinyo AG [11] statt, einem 
inhabergeführten Unternehmen im Bereich der Finanztechnologie (FinTech) mit 
Sitz in Deutschland. Mit der Erfahrung aus über 13 Jahren unterstützt aifinyo 
kleine und mittelständische Unternehmen (KMU) bei ihrer Liquiditätsplanung. Um 
dies möglichst effizient und wirtschaftlich zu gestalten, werden vermehrt digitale 
und weitgehend automatisierte Lösungen für Rechnungsabwicklung, Finanzie-
rung und Cashflow-Management eingesetzt. Dabei beschäftigt aifinyo rund 70 
Mitarbeitende sowie eine eigene Softwareentwicklung, die maßgeblich zur konti-
nuierlichen Weiterentwicklung und Automatisierung der Geschäftsprozesse bei-
trägt. 

Im Zentrum des Geschäftsmodells steht die automatisierte Verarbeitung einge-
hender Rechnungen im Rahmen der Rechnungsvorfinanzierung. Monatlich wer-
den mehrere tausend Rechnungen verarbeitet. Dieses Volumen kann nur durch 
standardisierte und digitalisierte Abläufe effizient bewältigt werden. Der gesamte 
Prozess, beginnend mit der Erfassung und Validierung eingereichter Rechnungen 
über die Limitprüfung und Auszahlung bis hin zur Einzahlungszuordnung oder 
dem Forderungsmanagement, basiert auf der zuverlässigen Extraktion der Rech-
nungsinformationen. Fehlerhafte Daten, beispielsweise durch ungenaue Texter-
kennung, können zu Verzögerungen, falschen Zahlungen oder sogar zu Verstö-
ßen gegen regulatorische Vorgaben führen. 

Die aifinyo AG misst der Weiterentwicklung der Rechnungsdatenextraktion daher 
zentrale Bedeutung zu, da sie wesentlich zur Effizienzsteigerung und Risikomini-
mierung beiträgt. Dieses Kapitel beschreibt die organisatorischen und techni-
schen Rahmenbedingungen, unter denen die Evaluation von LLM-basierten Me-
thoden erfolgt. Es beleuchtet den softwaregestützten Rechnungsprozess der 
aifinyo AG, die rechtlichen Anforderungen an Rechnungen gemäß § 14 UStG so-
wie die Grenzen des derzeit eingesetzten Rechnungs-OCR, die den Ausgangs-
punkt für die Entwicklung und Bewertung neuer LLM-gestützter Ansätze bilden. 
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3.1  Rechnungsvorfinanzierung bei aifinyo 

Der zentrale Geschäftsprozess der aifinyo AG ist die Verarbeitung eingereichter 
Rechnungen. Dabei stellt die Rechnungsvorfinanzierung [12] einen wesentlichen 
Teil des Hauptgeschäftes dar. In diesem Prozess werden offene Forderungen von 
den Forderungsinhabern (Kreditoren) angekauft, vorfinanziert und durch Abtre-
tung des Zahlungsanspruches an aifinyo übertragen. Die angekauften Rechnun-
gen werden dann nach Erreichen des Zahlungsziels vom ursprünglichen Rech-
nungsempfänger (Debitor) gegenüber aifinyo beglichen. Erfolgt keine Zahlung, 
wird die Forderung durch aifinyo als neuen Forderungsinhaber im Rahmen des 
Forderungsmanagements geltend gemacht.  

Im Rahmen dieser Arbeit werden ausschließlich der Factoringprozess und die da-
mit einhergehenden Herausforderungen betrachtet. Weitere Dienstleistungen der 
aifinyo AG wie die Einkaufsfinanzierung (Finetrading), Leasing oder Smart Bill-
ment, also das Schreiben und Verwalten eigener Rechnungen, können zwar von 
den Ergebnissen der Untersuchung profitieren, bleiben aber zunächst unberück-
sichtigt. 

Der Fokus auf den Factoringprozess ergibt sich aus dem damit verbundenen, 
unternehmenseigenen ERP-System Infact, das diesen Prozess weitestgehend di-
gitalisiert abbildet und somit eine umfassende und qualitativ hochwertige Daten-
grundlage für die Untersuchung schafft. Die Menge, Vollständigkeit und Genau-
igkeit der historischen Daten sind bei den weiteren Produkten nicht in diesem 
Umfang gegeben. 
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3.2  Die Rechnung als Ausgangspunkt 

Auch wenn im wirtschaftlichen Sinne mit der Vorfinanzierung eine Forderung 
übernommen wird, beginnt der Prozess mit der zugrunde liegenden Rechnung. 
Sie bildet die rechtliche Grundlage für eine Forderung und enthält alle relevanten 
Informationen, die für die weitere Verarbeitung benötigt werden. Dabei unterliegt 
sie in Deutschland den Vorschriften des § 14 Umsatzsteuergesetzes [13], welches 
die Pflichtangaben sowie die Anforderungen an Echtheit, Unversehrtheit und Les-
barkeit von Rechnungen regelt. Für automatisierte Extraktionssysteme sind diese 
Vorgaben somit zentral, da sie die zu erreichende Mindestanforderung an die zu 
extrahierenden Felder darstellen. Zu den gesetzlich vorgeschriebenen Angaben 
zählen unter anderem Name und Anschrift des leistungserbringenden Unterneh-
mers (Kreditor) und des Leistungsempfängers (Debitor), das Rechnungsdatum, 
eine fortlaufende Rechnungsnummer, die Art und Menge der Leistung, das Ent-
gelt, der Steuersatz und der ausgewiesene Steuerbetrag. 

Eine besondere Herausforderung stellt dabei die Identifikation der Rechnungs-
nummer dar. Gesetzlich vorgeschrieben sind lediglich ihre Eindeutigkeit und eine 
lückenlose Fortführung. Genaue Vorgaben zur Formatierung oder zum Aufbau 
der Rechnungsnummer existieren nicht. In der Praxis sind daher vielfältige Ver-
sionen zu finden. Etwa rein numerische Formate (z. B. „123456789“), alphanu-
merische Formate (z. B. „R-001 / 2025“) oder Kombinationen mit Datumsangaben 
(z. B. „20250627-001“) sind möglich. Eine Rechnungsnummer wie „R-001 / 2025“ 
kann somit ebenso in der Form „R-001/2025“ korrekt sein, was speziell in Hinblick 
auf optische Zeichenerkennung (OCR) eine Herausforderung darstellt. 

Für FinTech-Unternehmen wie die aifinyo AG ist eine präzise und nachvollzieh-
bare Erfassung dieser Informationen von hoher Bedeutung. Es handelt sich um 
Rechnungsdaten, die sowohl für die anschließende interne Verwaltung der For-
derungen als auch für die Honorierung und Annahme sowie für die Zahlungszu-
ordnung entscheidend sind. Bereits kleine Fehler können hierbei weitreichende 
Folgen nach sich ziehen.  
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3.3  Ablauf der Rechnungsverarbeitung 

Die Verarbeitung von Rechnungen erfolgt bei aifinyo in einem weitgehend digi-
talisierten Prozess, beginnend mit der Erstellung oder dem Upload der Rechnung 
durch die Kunden im aifinyo-Kundenportal. Die Rechnungen werden als PDF oder 
Bilddatei (PNG, JPEG) in die unternehmenseigene ERP-Software Infact hochgela-
den. Anschließend erfolgt eine automatisierte Verarbeitung durch das Rech-
nungs-OCR der gini GmbH, bevor geschulte Kundenbetreuer die Ergebnisse kon-
trollieren und gegebenenfalls korrigieren. Die so validierten Rechnungsdaten 
bilden die Grundlage für die nachfolgenden, teilweise automatisierten Prozess-
schritte. 

 Diese umfassen unter anderem die Limitprüfung, die Veritätsprüfung, die Aus-
zahlung, die Zahlungszuordnung sowie die Buchung und den Abschluss. Im An-
schluss daran folgt das Forderungsmanagement. Wie Abbildung 3.1 zeigt, sind 
diese Schritte eng miteinander verknüpft und können weitere Folgeprozesse wie 
automatische Buchungen, E-Mails oder zusätzliche Prüfungen auslösen. Eine prä-
zise Rechnungsdatenextraktion ist daher von grundlegender Bedeutung, da Feh-
ler weitreichende wirtschaftliche Folgen nach sich ziehen können – von fehler-
haften Auszahlungen bis hin zu Forderungsausfällen oder Reputationsschäden. 

Abbildung 3.1 Ablauf der Rechnungsverarbeitung 
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Im Folgenden werden die einzelnen Prozessschritte der Rechnungsverarbeitung 
bei aifinyo detaillierter beschrieben, wobei insbesondere die Implikationen von 
Extraktionsfehlern aufgezeigt werden, ohne jedoch vertieft auf juristische oder 
wirtschaftliche Aspekte einzugehen. 
 

Limitprüfung 

Nach dem Auslesen der Rechnungsdaten und ihrer Validierung erfolgt zunächst 
eine Limitprüfung. Hierbei wird geprüft, ob der für die Vorfinanzierung der Rech-
nung nötige Ankaufrahmen der Kundenbeziehung ausreichend ist. Grundlegend 
hierfür sind die Risikobewertungen der Risikoabteilung und die daraus resultie-
renden Ankaufrahmen zwischen Kreditoren und Debitoren sowie individuell ver-
traglich zugesicherte Ankaufrahmen. Das Limitmodul übernimmt auf Basis der 
vorab definierten Ankaufrahmen automatisch die Ankaufentscheidung und erfor-
dert nur ein manuelles Einschreiten, wenn vorab definierte Schwellwerte erreicht 
sind oder Auffälligkeiten wie beispielsweise stark abweichende Rechnungsbe-
träge auftreten. Fehlerhafte Rechnungsbeträge oder falsch ausgelesene Debito-
ren können hierbei dazu führen, dass es zu unnötigen Verzögerungen, zur Ab-
lehnung des Rechnungsankaufs oder sogar zur Ausnutzung fremder 
Ankaufrahmen kommt. 

 

Veritätsprüfung 

Nach der Limitprüfung erfolgt die Veritätsprüfung. Dabei wird geprüft, ob die 
abgerechnete Leistung gegenüber dem Debitor erbracht wurde und somit die 
Werthaltigkeit der Forderung besteht. Je nach Risikoeinstufung der Rechnungs-
beziehung erfolgen hierfür stichprobenartige Prüfungen in unterschiedlicher In-
tensität. Hierzu werden in erster Linie automatisierte Rückfragen per E-Mail an 
die Debitoren versendet, in denen die Bestätigung der Leistungserbringung er-
beten wird. Falsch erfasste Rechnungsdaten wie Rechnungsnummer, Rechnungs-
betrag oder Debitoren führen hier ebenfalls zu Nachfragen und somit zu manu-
eller Nacharbeit beziehungsweise zur Preisgabe von Daten nicht involvierter 
dritter Parteien. 
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Auszahlung 

Die Auszahlung erfolgt auf Grundlage einer buchhalterischen Verrechnung der 
Kreditorenkonten. Hierbei wird der Saldo des jeweiligen Kreditorenkontos ge-
prüft, wobei sämtliche Buchungsvorgänge seit der letzten Verrechnung berück-
sichtigt werden. Ergibt sich daraus ein positiver Saldo zugunsten des Kreditors, 
wird automatisch eine Überweisungsbuchung an das hinterlegte Referenzkonto 
des Kunden gebucht und nach Freigabe eine Überweisung ausgelöst. Fehlerhafte 
Rechnungsbeträge oder nicht korrekt zugeordnete Debitoren haben hierbei fal-
sche Buchungen zur Folge, die im Sinne einer ordentlichen Buchführung storniert 
und erneut korrekt gebucht werden müssen. Solche Korrekturen sind auf der 
Abrechnung des Kunden ersichtlich und können ebenfalls zu Nachfragen und ma-
nuellem Mehraufwand führen. 

 

Zahlungszuordnung 

In der logischen Abfolge des Rechnungsverarbeitungsprozesses schließt sich an 
die Auszahlung die Zahlungszuordnung an. Auch wenn sie als prozessual nach-
folgender Schritt verstanden werden kann, handelt es sich in der Praxis um eine 
parallele Aufgabe, da eingehende Zahlungen der Debitoren täglich eingehen und 
zugeordnet werden müssen. Die Zuordnung erfolgt dabei weitestgehend teilau-
tomatisiert. Anhand von Merkmalen wie bereits bekannten Bankverbindungen, 
den für den Zahlungseingang vorgesehenen Eingangskonten, der Rechnungs-
nummer im Verwendungszweck und dem Rechnungsbetrag wird der Kundenbe-
treuung ein Vorschlag zur Zahlungszuordnung gemacht. Liegen diese Informati-
onen unvollständig, fehlerhaft oder inkonsistent vor, kann das System keine 
eindeutige Zuordnung vornehmen. In solchen Fällen ist eine manuelle Prüfung 
erforderlich, die mit erheblichem Aufwand verbunden sein kann. 
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Forderungsmanagement 

Bleibt eine Zahlung nach Erreichen der Fälligkeit aus, beginnt der Prozess des 
Forderungsmanagements. Dieser ist im Wesentlichen automatisiert und umfasst 
ein mehrstufiges Verfahren, das mit der Zahlungserinnerung beginnt und über 
Mahnungen und Eskalationsschreiben mit dem Inkassoprozess endet. Die Grund-
lage für diesen Ablauf bilden die im System gespeicherten Rechnungsinformatio-
nen. Fehlerhaft erfasste Fälligkeiten (also Rechnungsdatum + Zahlungsziel), 
Rechnungsbeträge oder Rechnungsnummern sowie Debitorendaten können zu 
weitreichenden Problemen führen. Ein falsch erkanntes Zahlungsziel kann zu ei-
ner verfrühten Mahnung führen und die Kundenbeziehung unnötig belasten. Un-
stimmigkeiten bei Rechnungsnummer oder Betrag gefährden die rechtliche 
Grundlage der Forderung, während fehlerhafte Debitorenzuordnungen sogar zu 
Mahnschreiben an unbeteiligte Dritte führen können. Solche Vorfälle untergraben 
die Professionalität des Unternehmens und erfordern eine aufwändige manuelle 
Nachbearbeitung. 

3.4  Infact als zentrale Softwareplattform 

Die in Abschnitt 3.3 dargestellten Schritte der Rechnungsverarbeitung werden 
innerhalb der aifinyo AG vollständig durch die unternehmenseigene ERP-Software 
Infact abgebildet. Sie wurde speziell für die Anforderungen des Factorings entwi-
ckelt und bündelt alle relevanten Abläufe von der Einreichung der Rechnung bis 
hin zum Forderungsmanagement in einer zentralen Plattform. 

Aus Sicht der Kunden reduziert sich die Nutzung im Wesentlichen auf zwei Funk-
tionen. Die Einreichung neuer Rechnungen sowie das Dashboard, das den aktu-
ellen Status der eingereichten Forderungen transparent macht. Die eigentliche 
Verarbeitung der Rechnungen erfolgt dagegen fast ausschließlich durch interne 
Rollen. Kundenbetreuung und Risikoabteilung nutzen Infact, um die aus der 
Texterkennung gewonnenen Rechnungsdaten zu prüfen, zu korrigieren und für 
die nachfolgenden Prozessschritte freizugeben. Damit liegt der Schwerpunkt der 
Software weniger auf der Kundenschnittstelle, sondern vielmehr auf der  
internen Abbildung, Steuerung und Dokumentation des gesamten Workflows. 
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Besondere Bedeutung haben dabei die Validierungsschritte und die Geschäfts-
partnerlogik. Rechnungen können nur durch registrierte Kreditoren eingereicht 
und ausschließlich gegen Debitoren adressiert werden, die im Adressbuch des 
Kreditors hinterlegt sind. Diese Adressdaten werden nach der ersten Einreichung 
durch Kundenbetreuung und Risiko verifiziert, sodass Felder wie Kreditor oder 
Debitor im weiteren Prozess weniger fehleranfällig sind. Relevanter für die hier 
untersuchte Datenextraktion sind dagegen Felder wie Rechnungsnummer, Da-
tum und Betrag, deren Genauigkeit unmittelbaren Einfluss auf Limitprüfung, Aus-
zahlung, Zahlungszuordnung und Forderungsmanagement hat. 

Infact übernimmt somit eine Doppelfunktion. Einerseits stellt es für die Kunden 
die Schnittstelle zur Einreichung und Statusabfrage bereit, andererseits bildet es 
als interne Plattform die Grundlage für alle faktorrelevanten Arbeitsschritte. Für 
die vorliegende Untersuchung ist es von zentraler Bedeutung, da sämtliche Rech-
nungen, die in den Factoringprozess eingehen, in Infact gespeichert werden und 
damit die Datenbasis für die Evaluation bilden. 
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4 Stand der Forschung und technische Grund-
lagen 

Die automatisierte Extraktion von Informationen aus Geschäftsdokumenten stellt 
ein kontinuierlich wachsendes Forschungsgebiet dar [14], [15], das durch den 
zunehmenden Einsatz von maschinellem Lernen und zuletzt von Large Language 
Models neue methodische Impulse erhält. Dieses Kapitel gibt einen Überblick 
über die wesentlichen Forschungsrichtungen und technischen Grundlagen, die 
für die Bewertung moderner LLM-basierter Extraktionsstrategien relevant sind. 

Die Methoden zur automatisierten Informationsextraktion haben sich von regel-
basierten Ansätzen über maschinelles Lernen bis hin zu Large Language Models 
kontinuierlich weiterentwickelt. Diese Entwicklung prägt das heutige Verständnis 
von Dokumentenverarbeitung und Rechnungsdatenextraktion. 

Ein weiterer zentraler Aspekt in dieser Arbeit ist die Rolle des PDF-Formats als 
technische Grundlage der digitalen Dokumentenverarbeitung. Die Eigenschaften 
dieses Formats und die Vielfalt seiner Generierungsprozesse schaffen sowohl 
Möglichkeiten als auch Herausforderungen für automatisierte Extraktionsverfah-
ren. 

Die aktuellen Entwicklungen im Bereich der Large Language Models eröffnen 
neue Paradigmen für die Dokumentenverarbeitung, die über traditionelle OCR-
basierte Ansätze hinausgehen. Diese theoretischen und methodischen Grundla-
gen bilden den Rahmen für das Verständnis moderner Extraktionsarchitekturen 
und deren Potenziale. 

4.1 PDF als Medium der Rechnungsverarbeitung 

Das Portable Document Format (PDF) wurde 1993 von Adobe im Rahmen des 
sogenannten Camelot-Projekts eingeführt, mit dem Ziel, ein plattformunabhängi-
ges, layoutgetreues Austauschformat für elektronische Dokumente zu schaf-
fen [16]. Die Spezifikation wurde 2008 erstmals als offener Standard unter ISO 
32000-1 normiert und 2017 mit ISO 32000-2 aktualisiert. Seither gilt PDF als De-
facto-Standard für den elektronischen Dokumentenaustausch in Verwaltung und 
Wirtschaft.  
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Die technischen Eigenschaften von PDF-Dokumenten sind ein relevanter Aspekt 
für das Verständnis automatisierter Informationsextraktionsverfahren. PDF 
wurde ursprünglich als finales Ausgabemedium konzipiert und gewährleistet eine 
konsistente visuelle Darstellung, bildet jedoch die logische Struktur der enthalte-
nen Informationen nur eingeschränkt ab [17]. Zwar wurden mit tagged PDFs ab 
Version 1.4 erste Ansätze zur semantischen Auszeichnung eingeführt, diese sind 
jedoch in der Praxis uneinheitlich implementiert und häufig unvollständig. Eine 
aktuelle Analyse zur PDF-Barrierefreiheit zeigt beispielsweise, dass weniger als 
3,2 % aller untersuchten PDFs alle strukturellen Kriterien erfüllen, während fast 
75 % keinerlei Tags enthalten. Zudem bestehen für viele PDF-Generatoren er-
hebliche technische Hürden bei der automatischen Erzeugung korrekt getaggter 
Dokumente [18]. 

Unterschiede in den PDF-Erstellungsmethoden, etwa zwischen nativ generierten, 
getaggten, nicht getaggten oder bildbasierten PDFs, können die Qualität der 
Textextraktion erheblich beeinflussen und damit nachgelagerte Verarbeitungs-
prozesse erschweren oder verändern. 

4.1.1  Generierte PDFs mit eingebettetem Text 

Die Mehrheit der bei der aifinyo AG verarbeiteten Rechnungsdokumente ent-
stammt automatisierten PDF-Generierungsprozessen, bei denen Daten aus Enter-
prise-Resource-Planning-Systemen (ERP) oder Buchhaltungssystemen in struktu-
rierte Dokumentenlayouts überführt werden. Diese maschinengenerierten PDFs 
enthalten den Rechnungstext bereits in digitaler, durchsuchbarer Form und er-
fordern theoretisch keine optische Zeichenerkennung (OCR) im klassischen 
Sinne. 

Die Extraktion von Textinhalten aus solchen Dokumenten wird jedoch durch de-
ren interne Struktur erschwert, da diese nicht der visuellen Anordnung ent-
spricht [19]. Textfragmente können in beliebiger Reihenfolge gespeichert sein, 
Tabellenstrukturen liegen häufig als separate Textblöcke ohne explizite Relati-
onsinformationen vor, und semantische Zusammenhänge zwischen Datenele-
menten müssen aus der räumlichen Anordnung der Koordinaten abgeleitet wer-
den. 
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Ein besonderes Phänomen stellen dabei CID-Zeichen dar. Sie entstehen, 
wenn PDF-Generatoren proprietäre oder nicht standardkonforme Schriftarten 
verwenden und Zeichen intern über Character Identifiers (CIDs) adressieren. 
Ohne eine korrekt interpretierbare Zuordnungstabelle (CMap) können diese CIDs 
bei der Textextraktion nicht in Unicode-Zeichen übersetzt werden. Das führt 
dazu, dass statt lesbarem Text unverständliche Platzhalter wie (cid:61) extrahiert 
werden [20].  

Zur Extraktion solcher Inhalte werden in der Praxis spezialisierte Bibliotheken wie 
Apache PDFBox [21], PDFMiner [22] oder PDF-Reader [23] eingesetzt. Diese 
greifen direkt auf die im PDF gespeicherten Objekte zu und rekonstruieren die 
darin eingebetteten Textfragmente, ohne dass externe Verfahren wie OCR not-
wendig sind. Dabei gehen jedoch wesentliche strukturelle Informationen verlo-
ren. Tabellen oder mehrspaltige Layouts werden zu einer linearen Abfolge von 
Textzeilen reduziert und die visuelle Hierarchie des Dokuments wandelt sich in 
eine flache Textdarstellung. Abbildung 4.1 verdeutlicht diesen Strukturverlust an-
hand des Vergleichs zwischen Original und extrahiertem Textlayer. 

Diese strukturellen Brüche innerhalb funktionaler Layoutbereiche verdeutlichen 
die Grenzen klassischer Parsing-Verfahren. Damit zeigt sich, dass rein regelba-
sierte Ansätze die inhärenten Strukturprobleme nur unzureichend ausgleichen 
können. Hier eröffnen sich neue Perspektiven durch den Einsatz semantisch trai-
nierter Modelle. Die Interpretation und korrekte Zuordnung extrahierter Frag-
mente kann durch kontextsensitives Post-Processing, etwa mit modernen NLP-
Modellen, verbessert werden. Large Language Models (LLMs) können hier zu-
sätzlich Potenzial zeigen, da sie auch bei fehlender struktureller Information in 
der Lage sind, semantische Zusammenhänge zu erkennen und implizite Bezüge 
zwischen Fragmenten herzustellen [24]. 

Abbildung 4.1 PDF-Textextraktion - Strukturverlust vom Original zum Textlayer 
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4.1.2  Bildbasierte PDFs 

Eine weitere Kategorie von Rechnungsdokumenten entsteht durch die Digitalisie-
rung physischer Belege mittels Scanner oder Smartphone-Kameras, wobei die 
resultierenden Bilddateien anschließend in PDF-Container eingebettet werden. 
Diese bildbasierten PDFs können sowohl als reines PDF ohne Textinformationen 
vorliegen als auch als Hybrid-Dokumente, die zusätzlich zur visuellen Repräsen-
tation eine durch nachgelagerte OCR-Verarbeitung generierte Textebene enthal-
ten. Diese Textebene wird dabei typischerweise durch OCR-Software wie bei-
spielsweise Tesseract eingebettet, um dem Nutzer ein wie für normale 
Textdokumente gewöhnliches Kopieren zu ermöglichen [25]. 

Die Herausforderungen bei der Verarbeitung bildbasierter PDFs sind vielschichtig 
und beginnen bereits bei der Qualität der visuellen Erfassung. Ungleichmäßige 
Beleuchtung, Aufnahmewinkel, Schatten oder Reflexionen können die nachgela-
gerte OCR-Performance erheblich beeinträchtigen und zu Erkennungsfehlern füh-
ren [26]. Moderne Smartphone-Kameras und auf Dokumentenerfassung spezia-
lisierte Scanner-Apps haben diese Problematik zwar durch automatische 
Bildkorrekturen und Kontrastanpassungen reduziert, dennoch bleibt die Quali-
tätsvarianz ein signifikanter Faktor für die Zuverlässigkeit automatisierter Extrak-
tionsprozesse. 

Die in bildbasierten PDFs eingebettete OCR-Textschicht neigt in der Praxis zu 
Fehlern, da sie auf der Interpretation visueller Zeichen basiert. Der Erkennungs-
prozess ist naturgemäß anfällig für Verwechslungen, etwa zwischen ähnlich aus-
sehenden Zeichen wie „0“ und „O“ oder „1“ und „l“ [27]. Neben typografischen 
Ähnlichkeiten können auch Bildrauschen, ungleichmäßige Ausleuchtung oder 
niedrige Auflösung zu inkonsistenten oder fragmentierten Textergebnissen füh-
ren [28]. Solche zusätzlichen Unsicherheiten erschweren die zuverlässige maschi-
nelle Weiterverarbeitung erheblich. Für die in dieser Arbeit untersuchte Rech-
nungsdatenextraktion bedeutet dies, dass bildbasierte PDFs zusätzliche 
Unsicherheiten einführen, die unabhängig von den Fähigkeiten der eingesetzten 
LLMs bestehen. 
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4.1.3  PDF-Parsing  

Die automatisierte Extraktion strukturierter Informationen aus PDF-Dokumenten 
erfordert spezialisierte Tools, die unterschiedliche Ansätze zur Bewältigung der 
inhärenten Strukturherausforderungen verfolgen. Eine vergleichende Analyse 
verschiedener PDF-Parsing-Bibliotheken zeigt erhebliche Unterschiede in ihrer Fä-
higkeit, mit den diversen PDF-Generierungsmustern und Layoutkomplexitäten 
umzugehen [10]. 

Eine umfassende Vergleichsstudie von Adhikari und Agarwal (2024) zeigt, dass 
sich PDF-Parsing-Bibliotheken in ihrer Eignung für unterschiedliche Dokumentka-
tegorien erheblich unterscheiden. In ihrer Analyse von zehn populären Tools an-
hand des DocLayNet-Datensatzes erzielten PyMuPDF und pypdfium die besten 
Ergebnisse bei standardisierten, tabellarischen Layouts wie bei Finanzdokumen-
ten [19]. 

Spezialisierte Tabellen-Extraktions-Tools wie Camelot [29] oder Tabula [30] ver-
suchen, die räumlichen Beziehungen zwischen Textfragmenten zu rekonstruieren 
und strukturierte Tabellendaten zu generieren. Diese Ansätze stoßen jedoch bei 
komplexen oder unregelmäßigen Layouts schnell an ihre Grenzen, da sie auf Heu-
ristiken zur Erkennung von Zellen- und Spaltengrenzen angewiesen sind [31]. 
 

Trotz der aufgezeigten Limitationen stellen PDF-Parsing- und Tabellen-Extrakti-
ons-Tools eine essentielle Vorverarbeitungsstufe dar. Sie liefern die strukturierten 
Rohdaten, die als Eingabe für LLM-basierte Verfahren dienen und damit die 
Grundlage für deren weiterführende semantische Analyse und Interpretation bil-
den. 

4.1.4  Strukturierte Rechnungsformate 

Mit der Einführung der EU-Norm EN 16931 und Formaten wie X-Rechnung und 
ZUGFeRD existieren standardisierte Rechnungsformate, die Rechnungsinhalte in 
maschinenlesbarer Form (XML-basiert) bereitstellen und das Problem der Textex-
traktion theoretisch erheblich reduzieren könnten [32], [33]. In Deutschland ist 
der Empfang elektronischer Rechnungen im X‑Rechnungsformat für bestimmte 
Unternehmen seit dem 01.01.2025 verpflichtend. Eine allgemeine Verpflichtung 
zur Ausstellung tritt jedoch erst ab 2027 in Kraft. Zudem bleiben große Teile des 
B2C-Marktes und zahlreiche internationale Transaktionen vorerst unberührt. 
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In der Praxis dominiert daher weiterhin das PDF als Rechnungsmedium, insbe-
sondere im internationalen Kontext, sodass die automatisierte Extraktion aus un-
strukturierten Dokumenten weiterhin ein relevantes Forschungsthema bleibt. 

4.2  Klassische Ansätze der Rechnungsdatenextrak-
tion 

Die Forschungsgeschichte der automatisierten Rechnungsdatenextraktion ist 
durch einen evolutionären Entwicklungsprozess geprägt, der die Grundlage für 
heutige Verfahren geschaffen hat (Abbildung 4.2). Diese klassischen Ansätze ha-
ben sowohl methodische Erkenntnisse als auch praktische Limitationen hervor-
gebracht, die den Kontext für moderne Entwicklungen bilden. 

Die wissenschaftliche Entwicklung lässt sich in verschiedene Paradigmen unter-
teilen, die jeweils spezifische Beiträge zum Forschungsfeld geleistet haben. Frühe 
regelbasierte Systeme arbeiteten mit statischen Layoutregeln und regulären Aus-
drücken, erzielten bei klar strukturierten Belegen zuverlässige Ergebnisse, schei-
terten jedoch an variablen Layouts [34]. Spätere statistische Verfahren, etwa 
Hidden Markov Models oder Conditional Random Fields, verbesserten die Gene-
ralisierbarkeit und ermöglichten eine probabilistische Modellierung komplexerer 
Layouts [35]. Mit dem Aufkommen neuronaler Netze und Deep-Learning-Metho-
den wurde schließlich die Grundlage für die aktuelle Forschung gelegt, in der 
Rechnungsinformationen zunehmend robust aus unstrukturierten Dokumenten 
extrahiert werden können. 

Diese historische Perspektive ist Grundlage für das Verständnis aktueller For-
schungstrends und ermöglicht eine fundierte Einordnung moderner Ansätze in 
den breiteren wissenschaftlichen Kontext der Dokumentenverarbeitung. 

 

Abbildung 4.2 Entwicklung der Rechnungsdatenextraktionsverfahren 
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4.2.1  OCR-basierte Verfahren und Post-Processing-
Strategien 

Optische Zeichenerkennung (OCR) bildet seit Jahrzehnten die Grundlage der au-
tomatisierten Textextraktion aus gescannten Dokumenten. Systeme wie Tes-
seract [25] haben erhebliche Fortschritte in der Erkennung von gedrucktem Text 
erzielt, etwa durch adaptive Klassifikatoren sowie Verfahren zur Korrektur von 
Schiefstellungen und gekrümmten Textzeilen. Dennoch bestehen Schwächen, 
insbesondere bei komplexen Layouts, Tabellenstrukturen und proportionalem 
Text. Diese Herausforderungen treten auch in rechnungsähnlichen Dokumenten 
auf, die durch variierende Layouts und Sprachmischungen eine hohe Fehleran-
fälligkeit für OCR-basierte Verfahren aufweisen [36]. Um die inhärenten Fehler-
quellen der OCR zu kompensieren, werden vielfältige Post-Processing-Techniken 
eingesetzt.  

Die automatisierte Rechnungsverarbeitung basiert traditionell auf einem zweistu-
figen Verfahren. Zunächst wird mittels OCR der visuelle Inhalt in maschinenles-
baren Text überführt, wonach anschließend eine regelbasierte Interpretation der 
extrahierten Inhalte erfolgt. Typische Post-Processing-Strategien [37] umfassen: 

- Pattern Matching: Abgleich extrahierter Zeichenfolgen mit charakteris-
tischen Schlüsselbegriffen wie „Rechnungsnummer“, „Betrag“ oder „Da-
tum“. 

- Layout-Heuristiken: Analyse der relativen Position und räumlichen An-
ordnung von Textelementen. 

- Formatvalidierung: Überprüfung extrahierter Werte gegen definierte 
Datums-, Betrags- oder Referenznummernmuster. 

Diese Ansätze liefern bei standardisierten Rechnungsformaten akzeptable Erken-
nungsraten, sind jedoch sehr anfällig für abweichende Layouts oder unkonventi-
onelle Formatierungen. Ihre Wartung erfordert kontinuierliche manuelle Anpas-
sung und skaliert schlecht für heterogene Dokumentensammlungen. 

Neuere Arbeiten erweitern diese klassische Pipeline um modulare Vorverarbei-
tungsschritte [1]. So werden Dokumente vor der OCR beispielsweise entzerrt, 
Artefakte wie Linien oder Barcodes entfernt und Layoutinformationen gezielt ex-
trahiert, bevor die regelbasierte Analyse erfolgt. Dies steigert die Robustheit ge-
genüber variierenden Rechnungsformaten und verbessert die Erkennungsraten 
insbesondere bei realen, qualitativ schwankenden Dokumentstapeln. 
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Parallel dazu gewinnen „Machine-Learning“-basierte Ansätze zunehmend an Be-
deutung. Anstelle vordefinierter Regeln werden trainierte Modelle eingesetzt, die 
relevante Felder direkt erkennen oder Layoutinformationen kontextsensitiv inter-
pretieren. Ein Beispiel ist das templatefreie System CloudScan [38], das zeigt, 
dass solche Verfahren eine höhere Generalisierbarkeit gegenüber variierenden 
Rechnungsformaten ermöglichen. Allerdings erfordern sie umfangreiche anno-
tierte Trainingsdaten und zeigen bei sehr unstrukturierten Dokumenten teils noch 
inkonsistente Ergebnisse. 

4.2.2  Industrielle Lösungen 

Der kommerzielle Markt für Rechnungsdatenextraktion wird von spezialisierten 
Anbietern dominiert, die proprietäre Kombinationen aus OCR, Machine Learning 
und regelbasierten Post-Processing-Mechanismen einsetzen. Anbieter wie Gini, 
Klippa, Mindee oder ABBYY richten ihre Systeme branchenüblich auf wiederkeh-
rende Dokumentstrukturen aus, was eine gezielte Optimierung auf bestimmte 
Layout- und Formatvarianten ermöglicht. 

Gini als in dieser Arbeit verwendete Referenzlösung repräsentiert den aktuellen 
Stand kommerzieller OCR-basierter Systeme. Die Lösung kombiniert spezialisierte 
OCR-Engines mit KI-basierter Felderkennung („Smart OCR+“), die laut Hersteller 
eine semantisch orientierte Extraktion relevanter Rechnungsfelder ermöglicht 
und die manuelle Nachkorrektur reduzieren soll [39]. 

Insgesamt lässt sich ein allgemeiner Trend zu hybriden Systemen erkennen, die 
regelbasierte Validierungs- und Plausibilitätsmechanismen mit ML-basierten Ex-
traktionskomponenten kombinieren, wie es etwa Klippa mit DocHorizon be-
wirbt [40]. 

Details zu den zugrunde liegenden Verfahren, den genutzten Trainingsdaten so-
wie den eingesetzten Optimierungs- und Post-Processing-Mechanismen werden 
von den Anbietern jedoch nicht öffentlich spezifiziert, sodass eine unabhängige 
Bewertung der Ansätze nur eingeschränkt möglich ist. 
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4.3 LLM-basierte Ansätze zur Informationsextrak-
tion 

Die bisher beschriebenen Verfahren verdeutlichen, dass klassische, regel- und 
OCR-basierte Ansätze bei der Extraktion von Rechnungsdaten oft an ihre Grenzen 
stoßen. Large Language Models (LLMs) eröffnen hier neue Perspektiven. Dabei 
handelt es sich um tiefe neuronale Netze mit teils mehreren hundert Milliarden 
Parametern, die auf riesigen Mengen natürlicher Sprache trainiert wurden [41]. 
Ihr zentrales Trainingsziel ist die Vorhersage des nächsten Tokens in einer gege-
benen Sequenz („Next-Word Prediction“), wodurch sie in der Lage sind, sprach-
liche Strukturen, semantische Muster und kontextuelle Abhängigkeiten zu erfas-
sen. 

LLMs werden typischerweise in zwei Phasen entwickelt. Im Pre-Training erwerben 
sie auf einer breiten Textbasis allgemeines Sprachverständnis, im anschließenden 
Fine-Tuning werden sie für spezifische Anwendungsfälle optimiert. In ihrer 
Grundform sind sie domänenübergreifend einsetzbar, lassen sich aber durch ge-
zieltes Prompting oder geringe Anpassungen an neue Aufgaben anpassen. Ihre 
Fähigkeit, auch ohne aufwendiges erneutes Training in unbekannten Aufgaben 
zu bestehen, wird als Zero-Shot- bzw. Few-Shot-Learning bezeichnet und ist ins-
besondere für Szenarien mit variablen oder schwer standardisierbaren Eingaben 
relevant [42]. 

Die technologische Basis moderner LLMs bilden Decoder-only-Transformer-Mo-
delle. Sie gehen auf die allgemeine Transformer-Architektur [43], und wurden 
mit der GPT-Reihe erstmals praktisch umgesetzt [44], [45]. Abbildung 4.3 zeigt 
die grundlegende Architektur eines solchen Modells mit den charakteristischen 
Komponenten wie Token Embedding, Positional Encoding und dem zentralen De-
coder-Block mit Masked Self-Attention.  

Abbildung 4.3 Vereinfachte Architektur: Decoder-only-Transformers-Model 
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Diese Architektur ermöglicht es, Texte parallel zu verarbeiten und über Mecha-
nismen wie Self-Attention kontextrelevante Teile einer Eingabe gezielt zu gewich-
ten. Sie hat sich als besonders leistungsfähig für komplexe Sprachverarbeitungs-
aufgaben erwiesen und bildet die Grundlage für aktuelle Modelle wie GPT-3 [41] 
oder Claude [46]. 

LLMs werden zunehmend auch in der strukturierten Dokumentenanalyse einge-
setzt, da sie über reines Sprachverständnis hinaus semantische und teilweise 
auch strukturelle Beziehungen erkennen können. Im Gegensatz zu stark regelba-
sierten Pipelines kombinieren sie in einem Modell sowohl kontextuelle Interpre-
tation als auch inhaltliche Extraktion, was neue Möglichkeiten für die Verarbei-
tung komplexer, variantenreicher Rechnungsdokumente eröffnet. 

4.3.1  Transformer-Modelle für strukturierte Doku-
mente 

Die Einführung der Transformer-Architektur [43] markierte einen Wendepunkt in 
der automatisierten Textverarbeitung und legte den Grundstein für moderne 
Large Language Models. Der revolutionäre „Attention is All You Need“-Ansatz er-
möglichte es erstmals, komplexe sprachliche Beziehungen allein auf Basis von 
Aufmerksamkeitsmechanismen zu erfassen. Im Zentrum steht dabei das soge-
nannte Attention-Prinzip. Statt Wörter sequenziell zu verarbeiten, wie es bei 
früheren Modellen der Fall war, analysieren Transformer alle Wörter eines Textes 
gleichzeitig und gewichten ihre Bedeutung in Abhängigkeit vom Kontext. So kann 
das Modell etwa erkennen, dass sich das Wort „Rechnung“ auf ein Datum oder 
einen Betrag bezieht, selbst wenn diese Informationen im Text weit voneinander 
entfernt stehen. Dieser parallele Verarbeitungsansatz ermöglicht ein tiefes Ver-
ständnis sprachlicher Zusammenhänge und bildet die Grundlage für die Leis-
tungsfähigkeit moderner LLMs. 

BERT (Bidirectional Encoder Representations from Transformers) wurde 2019 
vorgestellt und demonstrierte das Potenzial bidirektionaler Sprachmodelle für ver-
schiedene NLP-Aufgaben [47]. Dabei wird betont, dass BERT durch „bidirectional 
representations“ erstmals in der Lage ist, den gesamten umgebenden Kontext 
eines Tokens gleichzeitig zu berücksichtigen, indem es in allen Schichten sowohl 
den links- als auch den rechtsseitigen Kontext einbezieht. Dies erwies sich insbe-
sondere bei der Interpretation fragmentierter oder unstrukturierter Textinhalte 
als vorteilhaft. 
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LayoutLLM erweiterte das BERT-Konzept um räumliche Koordinateninformatio-
nen und ermöglichte dadurch erstmals die Integration von Textinhalt und visuel-
ler Position in einem einheitlichen Modell [14]. Diese multimodale Architektur 
zeigte signifikante Verbesserungen bei dokumentenspezifischen Aufgaben, blieb 
jedoch auf Dokumente mit verfügbaren Positionsdaten beschränkt. 

Das Donut-Modell (Document Understanding Transformer without OCR) stellte 
einen radikalen Paradigmenwechsel dar, indem es komplett auf vorgelagerte 
OCR-Verarbeitung verzichtete und Dokumente direkt als Bilddaten verarbeitete 
[48]. Dieser Ansatz vermeidet OCR-Fehler, erfordert jedoch erhebliche Rechen-
ressourcen und spezialisierte Trainingsdaten. 

Diese Entwicklungslinie zeigt den Trend weg von pipeline-basierten Systemen hin 
zu End-to-End-Ansätzen, die semantisches Verständnis und strukturelle Analyse 
in einem einheitlichen Modell kombinieren. Moderne LLMs setzen diese Entwick-
lung fort, indem sie durch reine Sprachmodellierung auch bei vollständig struk-
turlosen Textinputs zuverlässige Extraktionen ermöglichen. 

4.3.2  LLMs für Rechnungsdatenextraktion  

Die Anwendung von Large Language Models auf die spezifische Domäne der 
Rechnungsdatenextraktion ist ein relativ junges Forschungsfeld, das erst mit der 
Verfügbarkeit leistungsfähiger Modelle wie GPT-3 und dessen Nachfolgern prak-
tische Relevanz erlangt. Aktuelle Studien zeigen vielversprechende Ergebnisse, 
die das Potenzial LLM-basierter Ansätze zur Überwindung traditioneller Extrakti-
onslimitationen verdeutlichen. 

Eine umfassende Untersuchung stellt eine LLM-zentrierte Pipeline zur Informati-
onsextraktion aus Rechnungen vor und vergleicht verschiedene LLM-Ansätze mit 
traditionellen OCR-basierten Methoden. Die Ergebnisse zeigen, dass moderne 
LLMs auch bei strukturell fragmentierten Textinputs konsistent bessere Extrakti-
onsraten erreichen als spezialisierte OCR-Systeme und zugleich eine hohe Ro-
bustheit gegenüber Layoutvariationen und unkonventionellen Dokumentstruktu-
ren aufweisen [49]. 

Ein alternativer Ansatz verfolgt ein Zero-Shot-QA-Ensemble (VESPA) und belegt, 
dass LLMs auch ohne spezifisches Training Rechnungsdaten mit hoher Genauig-
keit extrahieren können. Auf realen Rechnungsdatensätzen wurde dabei ein 
durchschnittlicher F1-Score von 87,5% erzielt, was mehrere etablierte kommer-
zielle Lösungen übertraf [50].  
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Darüber hinaus wurde mit ExTTNet ein spezialisiertes Deep-Learning-Modell für 
tabellenbasierte Extraktionsaufgaben in Rechnungen entwickelt. In Kombination 
mit einer vorgelagerten OCR-Vorverarbeitung (z. B. Tesseract) erreichte dieses 
einen F1-Score von bis zu 0,92 und verdeutlicht damit das Potenzial domänen-
spezifisch optimierter Architekturen, insbesondere für strukturierte Rechnungs-
bestandteile wie Tabellen [51]. 

Die in diesen Studien identifizierten Schlüsselfaktoren für erfolgreiche LLM-ba-
sierte Extraktion umfassen: 

- Zero-Shot-Fähigkeiten: LLMs können ohne vorheriges Training auf spezi-
fische Dokumenttypen angewandt werden und erzielen bereits bei erst-
maliger Anwendung brauchbare Ergebnisse. 

- Kontextuelle Interpretation: Anders als regelbasierte Systeme verste-
hen LLMs semantische Zusammenhänge und können auch bei fehlenden 
oder unvollständigen Schlüsselwörtern korrekte Zuordnungen vornehmen. 

- Skalierbarkeit: Neue Dokumenttypen oder Formate erfordern keine auf-
wendigen Training-Zyklen, sondern können durch Prompt-Anpassungen 
abgedeckt werden. 

Die aktuellen Forschungsergebnisse verdeutlichen einheitlich, dass LLM-basierte 
Ansätze das Potenzial haben, traditionelle OCR-Pipelines zu ersetzen oder erheb-
lich zu verbessern, wobei die optimale Implementierung stark von spezifischen 
Anwendungsanforderungen und verfügbaren Rechenressourcen abhängt. 

4.3.3  Zero-Shot- und Few-Shot-Learning 

Ein entscheidender Vorteil moderner Large Language Models liegt in ihrer Fähig-
keit, Aufgaben ohne vorheriges task-spezifisches Training (Zero-Shot) oder mit 
minimalem Training anhand weniger Beispiele (Few-Shot) zu lösen. Diese Eigen-
schaft wurde erstmals systematisch im Kontext von GPT-3 beschrieben und 
zeigte, dass große vortrainierte Sprachmodelle Aufgaben ohne spezifisches Fine-
Tuning bewältigen können. Damit wurde die Grundlage für heutige Zero- und 
Few-Shot-Strategien geschaffen [41].  
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Zero-Shot-Learning 

Beim Zero-Shot-Learning nutzt das Large Language Model ausschließlich sein 
während des Pre-Trainings erlerntes Welt- und Sprachwissen, um Aufgaben se-
mantisch zu lösen. Studien zeigen, dass GPT-3 durch rein textuelle Instruktionen 
in der Lage ist, zuvor ungesehene Aufgaben mit hoher Genauigkeit zu bewälti-
gen  [41]. Aktuelle Arbeiten bestätigen diese Ergebnisse für verschiedene Bench-
marks und argumentieren, dass Zero-Shot-Prompting insbesondere bei gut stan-
dardisierten Aufgaben konkurrenzfähige Ergebnisse zu spezialisierten Modellen 
liefern kann [52]. 

Für den Rechnungsdatenkontext legt dies nahe, dass LLMs Beträge, Datumsan-
gaben oder Rechnungsnummern ohne explizites Training extrahieren können, in-
dem sie auf erlernte Muster und allgemeines semantisches Wissen zurückgreifen. 

Few-Shot-Learning 

Few-Shot-Learning erweitert den Zero-Shot-Ansatz, indem das Modell eine kleine 
Anzahl von Beispielaufgaben innerhalb des Prompts (In-Context Learning) erhält. 
Es „lernt“ dabei nicht im trainingsbezogenen Sinn, sondern nutzt seine bereits 
gelernten Muster, um die gezeigten Beispiele zu imitieren und ähnliche Eingaben 
konsistent zu beantworten [41]. Dadurch kann das Modell spezifische Formatie-
rungsanforderungen, domänenspezifische Muster und in begrenztem Maße auch 
seltene Varianten berücksichtigen. Typische Anwendungsfälle sind: 

- Formatvorgaben (z. B. gewünschte JSON-Struktur) 
- Edge-Case-Handling (z. B. unkonventionelle Schreibweisen oder sel-

tene Layoutvarianten) 
- Domänenspezifische Terminologie (z. B. branchenspezifische Be-

griffe) 

Untersuchungen zeigen zudem, dass die Few-Shot-Leistung stark von der 
Prompt-Kalibrierung abhängt. Eine gezielte Anpassung der Beispielreihenfolge, 
Formulierungen und Label-Verteilung steigert die Zuverlässigkeit insbesondere 
bei Edge-Cases und domänenspezifischen Aufgaben signifikant [53]. 
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Chain-of-Thought Prompting 

Chain-of-Thought (CoT) Prompting erweitert Zero-Shot- und Few-Shot-Ansätze, 
indem das Modell seinen Reasoning-Prozess explizit durchläuft, anstatt direkt ein 
Endergebnis zu liefern. 

- Zero-Shot CoT: Das Modell wird mit einer Anweisung wie „Think step by 
step“ oder „Let’s think step by step“ zu schrittweisem Reasoning aufgefor-
dert, ohne Beispiele [52]. 

- Few-Shot CoT: Beispiele enthalten explizite Zwischenschritte, die das 
Modell imitiert [54]. 

Eine praxisrelevante Abwandlung stellt das sogenannte Hidden CoT dar, bei dem 
das Modell intern schrittweise denkt, aber nur das finale Ergebnis ausgibt. Erste 
Untersuchungen zeigen, dass Hidden CoT eine effektive Strategie für struktu-
rierte Extraktionsaufgaben darstellt, da es den Aufwand für nachgelagerte Post-
Processing-Schritte reduziert, eine hohe Konsistenz der Ergebnisse ermöglicht 
und zugleich die generierten Ausgabetoken sowie damit verbundene Kosten ver-
ringert [55]. 

Das folgende Beispiel illustriert einen möglichen Aufbau eines Hidden-CoT-
Prompts, wie er zur Extraktion von Rechnungsdaten gestaltet sein könnte. 

1. Finde alle Kandidaten für Rechnungsnummer, Datum und Beträge 

2. Prüfe das Format: 

         • Rechnungsnummer: alphanumerisch. 

 • Datum: ISO-Format (YYYY-MM-DD). 

 • Betrag: Double, Punkt als Dezimaltrennzeichen, kein Tausendertrennzeichen. 

3. Wähle den plausibelsten Betrag 

4. Gib nur das Ergebnis als JSON zurück, ohne Erklärungen. 

Abbildung 4.4 Chain-of-Thought Beispielprompt 

Studien belegen, dass Chain-of-Thought Prompting insbesondere bei komplexen 
Dokumentstrukturen die Extraktionsgenauigkeit signifikant verbessert, da es das 
Modell zu einer systematischeren Analyse zwingt [52], [54]. 
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4.3.4  Herausforderungen und offene Forschungsfra-
gen 

Trotz der vielversprechenden Theorien und ersten empirischen Erkenntnisse be-
stehen bei der praktischen Anwendung von LLMs auf strukturierte Datenextrak-
tion noch erhebliche Herausforderungen, die sowohl methodische als auch tech-
nische Aspekte umfassen. 

Konsistenz und Halluzinationen 

Ein zentrales Problem ist die Konsistenz der LLM-Ausgaben. Selbst bei determi-
nistischen Einstellungen (z. B. temperature = 0) lassen sich gelegentlich Variati-
onen in den Extraktionsergebnissen beobachten, was die Reproduzierbarkeit wis-
senschaftlicher Untersuchungen beeinträchtigt. Hinzu kommt das Risiko 
sogenannter Halluzinationen, also der Generierung plausibel erscheinender, je-
doch im Originaldokument nicht enthaltener Inhalte. Gerade bei Rechnungen 
kann dies bedeuten, dass Beträge, Datumsangaben oder Referenznummern er-
funden oder fehlerhaft ergänzt werden [56]. 

Parsing-abhängige Fehlerquellen 

Die Qualität der vorgelagerten Textextraktion aus PDF-Dokumenten hat direkten 
Einfluss auf die LLM-Performance. Fehlerquellen wie unvollständige Texterfas-
sung, fehlerhafte Zeichenkodierung oder das Aufbrechen tabellarischer Struktu-
ren (Abschnitt 4.1) wirken sich unmittelbar auf die Extraktion aus. Vision-unter-
stützte Ansätze, die Layout- und Bildinformationen direkt in die 
Modellverarbeitung einbeziehen, können hier Verbesserungen bieten, erhöhen 
aber die Komplexität und den Rechenaufwand. 

Kosten und Laufzeit versus Genauigkeit 

Die Balance zwischen Extraktionsgenauigkeit, Verarbeitungsgeschwindigkeit und 
entstehenden Kosten stellt eine praktische Optimierungsaufgabe dar. Große 
Cloud-Modelle erreichen in der Regel die höchste Genauigkeit, können jedoch bei 
massenhaft verarbeiteten Dokumenten durch Kosten und Latenzzeiten prohibitiv 
sein. Kleinere, lokal betreibbare Modelle bieten eine potenziell kosteneffiziente 
Alternative, erfordern jedoch Abstriche bei Genauigkeit und Robustheit [57]. 
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4.4  APIs und Integrationsarchitektur  

Die praktische Evaluation verschiedener LLM-Ansätze zur Rechnungsdatenextrak-
tion erfordert eine differenzierte Betrachtung der zugrunde liegenden Bereitstel-
lungsmodelle und deren technischen Charakteristika. Die Wahl zwischen Cloud-
basierten Services und lokal betreibbaren Open-Source-Alternativen beeinflusst 
nicht nur die methodische Durchführbarkeit, sondern auch die Reproduzierbarkeit 
wissenschaftlicher Untersuchungen. 

Kommerzielle Cloud-Angebote stellen in der Regel die leistungsstärksten Modelle 
bereit, gehen jedoch mit Einschränkungen hinsichtlich Kostenkontrolle, Datenho-
heit und Transparenz einher. Lokale Open-Source-Modelle ermöglichen hingegen 
volle Kontrolle über Daten und Evaluationsumgebung, erfordern aber beträchtli-
che Rechenressourcen und sind in ihrer Leistungsfähigkeit häufig limitiert. 

Von besonderer Bedeutung für Vergleichsstudien ist die zunehmende Standardi-
sierung der API-Schnittstellen. Einheitliche Formate, wie sie von Anbietern wie 
OpenAI und Anthropic oder in Open-Source-Implementierungen wie llama.cpp 
genutzt werden, erleichtern den Austausch von Modellen und ermöglichen me-
thodische Konsistenz. 

Die folgenden Unterabschnitte analysieren die Charakteristika der jeweiligen Be-
reitstellungsmodelle und ihre Relevanz für wissenschaftliche Evaluationsszena-
rien. 

4.4.1  Geschlossene Modelle (proprietäre Modelle) 

Kommerzielle LLM-Anbieter wie OpenAI und Anthropic stellen über Cloud-APIs 
den Zugang zu hochperformanten, geschlossenen Modellen bereit, die den aktu-
ellen Stand der Technik in vielen NLP-Aufgaben repräsentieren. Diese proprietä-
ren Systeme zeichnen sich durch ihre Leistungsfähigkeit und Stabilität aus, brin-
gen jedoch Einschränkungen hinsichtlich Transparenz und Datenschutz mit sich. 

OpenAI GPT-4 und GPT-4o gelten als Referenzmodelle für komplexe Textver-
ständnisaufgaben und zeigen konsistent hohe Leistungen bei strukturierten Ex-
traktionsaufgaben [58]. Die Modelle sind für Chat-basierte Interaktionen opti-
miert und unterstützen sowohl reine Textverarbeitung als auch multimodale 
Eingaben. GPT-4o erweitert die Grundfunktionalität um eine verbesserte Verar-
beitungsgeschwindigkeit und eine höhere Kosteneffizienz bei vergleichbarer Ge-
nauigkeit. 
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Anthropic Claude basiert auf dem Konzept der Constitutional AI, das auf inte-
grierte Sicherheitsmechanismen und erhöhte Transparenz abzielt [59]. Für struk-
turierte Extraktionsaufgaben zeigt Claude besondere Stärken bei der Einhaltung 
präziser Formatvorgaben und der Konsistenz der Ausgaben. 

Diese geschlossenen Modelle sind für Forschungsanwendungen relevant, da sie 
ohne lokale Hardware-Infrastruktur verfügbar sind und hohe Genauigkeit bei 
komplexen Extraktionsaufgaben ermöglichen. API-Parameter wie 
0#.1#$%0*$#	 = 	0 für deterministische Ausgaben und .%4_0-6#/7 zur Kosten-
kontrolle sind dabei zentral für reproduzierbare Experimente. Die Konfiguration 
dieser Parameter hat direkten Einfluss sowohl auf die Extraktionsgenauigkeit als 
auch auf die entstehenden Kosten pro verarbeitetem Dokument. 

4.4.2  Offene Modelle  

Open-Source-Sprachmodelle stellen eine praxisnahe Alternative zu geschlosse-
nen Cloud-Diensten dar und lassen sich lokal über Inferenzumgebungen wie 
LM Studio [60] oder Ollama [61] betreiben. Daraus ergeben sich Vorteile wie 
volle Datenkontrolle, transparente Kosten durch einmalige Hardware-Investitio-
nen sowie die Möglichkeit zur Anpassung der Modelle. Für wissenschaftliche Eva-
luationen sind offene Modelle besonders wertvoll, da sie Einblick in Architektur, 
Trainingsverfahren und Inferenz erlauben und damit die Reproduzierbarkeit un-
terstützen. 

Im Zentrum dieser Arbeit steht Gemma 3, eine von Google Research veröffent-
lichte Open-Source-Modellreihe [62]. Sie ist in verschiedenen Parametergrößen 
(1B, 2B, 4B, 12B, 27B) verfügbar, wurde für effiziente Inferenz optimiert und 
zeichnet sich durch vergleichsweise moderate Hardwareanforderungen aus. 
Gemma 3 bietet erweiterte Kontextlängen, optimierte Attention-Mechanismen 
und multimodale Fähigkeiten (Text- und Bildverarbeitung), wodurch es sich be-
sonders für lokale Experimente und wissenschaftliche Untersuchungen eignet. 

Darüber hinaus existieren weitere bedeutende offene Modellfamilien wie 
Llama [63] von Meta AI oder Mistral [64], die die Entwicklung zahlreicher spezi-
alisierter Varianten angestoßen haben und in Forschung wie Praxis eine zentrale 
Rolle spielen. Über Plattformen wie Hugging Face steht inzwischen eine große 
Vielfalt an offenen Modellen zur Verfügung, die je nach Anwendungsszenario un-
terschiedliche Stärken und Kompromisse zwischen Genauigkeit, Geschwindigkeit 
und Ressourcenverbrauch bieten. 
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4.4.3  Einheitliche API-Nutzung 

Ein wesentlicher technischer Fortschritt in der praktischen LLM-Integration liegt 
in der Standardisierung der API-Schnittstellen. Nahezu alle relevanten Anbieter 
bilden ein OpenAI‑kompatibles API-Format ab, wodurch eine einheitliche Integra-
tion verschiedener Modelle ermöglicht wird. 

Die Standardisierung erfolgt primär über den /v1/chat/completions Endpunkt, der 
eine konsistente Schnittstelle für Chat-basierte Interaktionen bereitstellt. Dieser 
Ansatz ermöglicht es, verschiedene Modelle mit identischen Client-Implementie-
rungen anzusprechen, was für Vergleichsstudien von zentraler Bedeutung ist. 

Wesentliche in dieser Arbeit verwendete API-Parameter umfassen: 

- model: Spezifikation des zu verwendenden Modells (z.B. „gpt-4.1“, 
„claude-3-sonnet“, „gemma-3-4b-it“) 

- messages: Liste von Nachrichten mit Rollenzuweisung (System, User, As-
sistent), die das Verhalten des Modells steuert. 

- temperature: Der Temperature-Parameter steuert die Ausgabevariabili-
tät (Randomness) eines Sprachmodells. Ein niedriger Wert (nahe 0) führt 
zu deterministischeren Ausgaben. Höhere Werte fördern teils kreativere 
Antworten, gehen jedoch mit einer erhöhten Wahrscheinlichkeit inkonsis-
tenter Ausgaben einher. Der sinnvolle Wertebereich variiert modellabhän-
gig, liegt jedoch typischerweise zwischen 0 und 2. 

- top_p: legt fest, bis zu welcher Wahrscheinlichkeit Tokens berücksichtigt 
werden (0 für deterministische Aufgaben) 

- max_tokens: Begrenzung der Antwortlänge zur Kostenkontrolle 

Für strukturierte Extraktionsaufgaben empfiehlt sich die Verwendung von 
0#.1#$%0*$#	 = 	0, da sie die Variabilität der Ausgaben minimiert und damit kon-
sistentere Ergebnisse ermöglicht [65]. Der .%4_0-6#/7 Parameter wird typischer-
weise konservativ gewählt, um sowohl Kosten zu begrenzen als auch sicherzu-
stellen, dass strukturierte JSON-Ausgaben vollständig übertragen werden. 

Diese API-Standardisierung ist für wissenschaftliche Untersuchungen von funda-
mentaler Bedeutung, da sie ermöglicht, Extraktionsstrategien anbieterübergrei-
fend zu implementieren und zu reproduzieren. Experimente können dadurch ver-
schiedene Modelle mit identischen Prompts und Parametern vergleichen, ohne 
modellspezifische Implementierungsunterschiede berücksichtigen zu müssen. 
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5  Versuchsaufbau und Methodik  

Die Untersuchung der Leistungsfähigkeit verschiedener Large Language Models 
(LLMs) bei der Rechnungsdatenextraktion im Vergleich zu dem von aifinyo ein-
gesetzten Rechnungs-OCR (Gini) erfordert einen Versuchsaufbau, der sowohl die 
spezifischen Anforderungen des Unternehmens als auch die aktuellen Möglich-
keiten der LLMs berücksichtigt. Verschiedene Extraktionsstrategien werden dabei 
auf identischen Datensätzen getestet und verglichen, um ein umfassendes Bild 
der jeweiligen Vor- und Nachteile zu erhalten und Aussagen über Optimierungs-
potenziale treffen zu können. 

Grundlage der Versuchsreihe ist eine eigens entwickelte Evaluationsplattform. Sie 
ermöglicht es, verschiedene Extraktionsstrategien anzulegen, diese gegen defi-
nierte Sample-Sets auszuführen und die Ergebnisse automatisch zu vergleichen. 
Ferner erzeugt sie für den Vergleich notwendige KPIs und persistiert alle Ergeb-
nisse konsistent. Auf diese Weise stellt sie eine wiederholbare und gründlich do-
kumentierte Evaluation der unterschiedlichen Ansätze sicher.  

Die Plattform ist dabei nicht nur ein technisches Hilfsmittel, sondern auch ein 
Forschungsartefakt, das im Sinne der gestaltungsorientierten Wirtschaftsinforma-
tik entwickelt wird [66]. Darüber hinaus orientiert sich der Entwurf am Konzept 
von „Experimentation Workbenches“, wie es in der Softwaretechnik vorgeschla-
gen wurde [67]. Dieses Konzept betont die Bedeutung von systematischer Un-
terstützung für Reproduzierbarkeit, Wiederholbarkeit und Nachvollziehbarkeit, 
die in der Plattform konsequent umgesetzt sind. Der Entwurf folgt somit dem 
Prinzip, Artefakte so zu gestalten, dass sie sowohl wissenschaftliche Strenge (Ri-
gor) als auch praktische Relevanz (Relevance) sicherstellen. 

Im Folgenden werden der experimentelle Aufbau, die verwendeten Daten, die 
technische Infrastruktur sowie das Evaluationskonzept und die angewandten 
Metriken beschrieben. 
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5.1  Experimenteller Aufbau und praktische Durch-
führung 

Der experimentelle Aufbau basiert auf einem dokumentbasierten Vergleichsan-
satz. Jedes einzelne Rechnungsdokument wird dabei durch mehrere LLM-Strate-
gien verarbeitet und mit den historischen Extraktionsergebnissen des bestehen-
den Rechnungs-OCRs sowie den anderen Strategien verglichen. Die Evaluation 
erfolgt in zwei Phasen. Zu Beginn wird eine iterative Optimierung anhand eines 
speziell zusammengestellten, inhaltlich komplexen Developmentdatensatzes mit 
3.000 Dokumenten durchgeführt. Anschließend erfolgt eine finale Blind-Evalua-
tion auf einem unabhängigen, repräsentativen Evaluationsdatensatz mit 10.000 
Dokumenten. Dieser wird zufällig aus dem Gesamtdatenbestand von über 
700.000 Rechnungen erstellt, wobei Überschneidungen zwischen den beiden Da-
tensätzen verhindert werden. 

Die Infact-Referenzdaten, die durch manuelle Überprüfung und Korrektur der 
Gini-OCR-Extraktion entstanden sind, dienen als Ground Truth für die Bewertung. 
Gegen diese Daten werden sowohl die historischen Gini-Ergebnisse als auch die 
in Abschnitt 4.3 beschriebenen LLM-Ansätze verglichen. 

Im Fokus der Evaluation stehen drei zentrale Datenfelder, die für die Rechnungs-
verarbeitung bei aifinyo von hoher Bedeutung sind. Dabei handelt es sich um die 
Rechnungsnummer als eindeutige Identifikation, den Rechnungsbetrag sowie das 
Rechnungsdatum. Diese Felder werden bewusst ausgewählt, da sie sowohl für 
die automatisierte Verarbeitung als auch für die manuelle Nachprüfung klar ab-
grenzbar und validierbar sind. Zudem weisen sie aufgrund ihrer Geschäftskritika-
lität die höchste Datenqualität in den Infact-Referenzdaten auf. Andere Felder 
bleiben unberücksichtigt, um den Fokus auf die robustesten und vergleichbarsten 
Kernfelder zu legen. 

Die praktische Durchführung der Experimente erfolgt in mehreren Schritten. Zu-
nächst werden alle Modelle mit einem einfachen Zero-Shot-Prompt in unter-
schiedlichen Konfigurationen getestet, um eine erste Vergleichsbasis zu schaffen 
und potenzielle Fehlerquellen in den Daten zu identifizieren. Nach den Korrektu-
ren der Referenzdaten und den ersten Erkenntnissen kommen optimierte Zero-
Shot-Prompts sowie Few-Shot-Prompts zum Einsatz, um leistungsfähige Strate-
gien für die finale Evaluation zu identifizieren. Parallel dazu erfolgt ein Benchmar-
king mehrerer Textextraktionsbibliotheken (Abschnitt 6.3.3), um eine robuste 
und konsistente Basis für die LLM-Verarbeitung sicherzustellen.  
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Dieses Vorgehen ermöglicht eine schrittweise Verfeinerung der Strategien und 
liefert eine fundierte Grundlage für die abschließende Bewertung anhand des 
Evaluationsdatensatzes. 

5.2  Datengrundlage der Evaluationsplattform 

Die in dieser Arbeit durchgeführten Versuche greifen auf den umfangreichen Do-
kumentenbestand der unternehmensinternen Factoring-Software Infact zurück, 
der eine breite Vielfalt an Layouts, Kreditoren und Branchen abdeckt. In mehr als 
sechs Jahren Geschäftstätigkeit hat sich ein Gesamtbestand von über 700.000 
Rechnungsdokumenten akkumuliert, von denen etwa 400.000 hochgeladen wur-
den und damit für die Evaluation zur Verfügung stehen. Ausschließlich diese 
Rechnungen werden berücksichtigt, da sie eine automatisierte Extraktion erfor-
dern. Die restlichen vom System selbst generierten Rechnungen, deren Daten 
bereits in strukturierter Form vorliegen, sowie eingereichte Scans in reiner Bild-
form werden ausgeschlossen. Letztere stellen zwar grundsätzlich eine Extrakti-
onsherausforderung dar, fallen jedoch nicht in den Fokus dieser Arbeit, da sie 
zunächst einer vorgelagerten OCR-Verarbeitung bedürfen. 

Die für die Experimente verwendeten Referenzdaten beruhen auf den ursprüng-
lich durch das Rechnungs-OCR extrahierten Werten, die im Rahmen der operati-
ven Prozesse manuell überprüft und korrigiert wurden. Auf diese Weise entstan-
den die sogenannten Infact-Referenzdaten, die die derzeit verlässlichste 
verfügbare Basis für die Bewertung der LLM-Extraktionen darstellen. Dennoch 
bleibt ein Restrisiko vereinzelter Fehler bestehen, da auch manuelle Kontrollen 
erfahrungsgemäß fehleranfällig sind [68]. 

Die OCR- und Infact-Referenzdaten werden in strukturierter Form persistiert und 
bilden die zentrale Grundlage für den Vergleich der verschiedenen Extraktions-
strategien. Die genaue technische Umsetzung der Evaluation erfolgt über eine 
eigens entwickelte Evaluationsplattform, deren Aufbau und Funktionsweise in Ab-
schnitt 6 beschrieben werden. 
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5.3  Evaluationskonzept und Metriken 

Die im vorangegangenen Abschnitt beschriebene Evaluationsplattform bildet die 
Grundlage für die Bewertung der verschiedenen LLM-basierten Extraktionsstra-
tegien. Ziel der Evaluation ist es, die Leistungsfähigkeit der Modelle unter realis-
tischen Bedingungen systematisch zu messen und vergleichbar zu machen. Ne-
ben der reinen Extraktionsgenauigkeit wird dabei auch die wirtschaftliche 
Effizienz berücksichtigt, da sowohl Tokenverbrauch als auch Verarbeitungsdauer 
in der Plattform erfasst werden. 

Die Bewertung erfolgt feldbasiert auf Dokumentenebene und nutzt die in der 
Plattform hinterlegten Infact-Referenzdaten als Ground Truth. Im Fokus stehen 
Rechnungsdokumente, deren fehlerfreie Datenerfassung eine zentrale Voraus-
setzung für nachgelagerte Prozesse wie Zahlungsfreigaben, Mahnwesen oder Li-
mitprüfungen darstellt. Eine unzureichende Extraktionsqualität kann in diesen Be-
reichen unmittelbar zu Fehlentscheidungen führen, weshalb eine präzise und 
nachvollziehbare Bewertung essenziell ist. 

Zur Absicherung der Ergebnisse wird ergänzend eine Signifikanzprüfung durch-
geführt. Dabei wird insbesondere mit dem McNemar-Test untersucht, ob Unter-
schiede zwischen Strategien statistisch belastbar sind. Ergänzende Kennzahlen 
wie Odds-Ratio und Wilson-Konfidenzintervalle ermöglichen eine differenziertere 
Interpretation und helfen, zufällige Befunde von echten Leistungsunterschieden 
zu trennen. 

5.3.1  Zielsetzung der Evaluation 

Die Evaluation verfolgt das Ziel, die Extraktionsleistung der verschiedenen LLM-
basierten Strategien objektiv und nachvollziehbar zu bewerten. Der Fokus liegt 
auf einer feldbasierten Analyse, da schon ein falsch extrahierter Wert unmittel-
bare Auswirkungen auf geschäftskritische Prozesse haben kann. Besonders rele-
vant sind die Felder Rechnungsnummer, Rechnungsdatum und Rechnungsbe-
trag, da sie für Zahlungsfreigaben, Mahnwesen und Limitprüfungen essenziell 
sind. Die Bewertung erfolgt dokumentenbasiert und vergleicht die von den Mo-
dellen extrahierten Werte mit den in den Infact-Referenzdaten hinterlegten 
Ground-Truth-Werten.  
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5.3.2  Metriken und Bewertungslogik 

Zur Bewertung der Extraktionsqualität wird die Genauigkeit als primäre Metrik 
herangezogen. Sie ermöglicht sowohl eine feldspezifische als auch eine feldüber-
greifende Analyse der Ergebnisse. Die Berechnung erfolgt feldweise innerhalb 
eines Dokuments, um Unterschiede in der Erkennungsleistung für einzelne Rech-
nungsfelder sichtbar zu machen. 

Ein Feldwert gilt als korrekt, wenn er exakt oder nach einer definierten Normali-
sierung mit dem Ground-Truth-Wert übereinstimmt. Fehlende oder abweichende 
Werte werden als inkorrekt gewertet. Bei der hier betrachteten Rechnungsdaten-
extraktion mit fest definierten, obligatorischen Feldern entfällt im Unterschied zu 
binären Klassifikationsaufgaben wie beispielsweise der Spam-Erkennung die Ka-
tegorie der True Negatives, da jedes Feld einen konkreten Sollwert besitzt und 
das Ergebnis ausschließlich korrekt oder inkorrekt sein kann. Damit wird die Ge-
nauigkeit in einer auf die Rechnungsdatenextraktion angepassten Form berech-
net, die sich an der klassischen Definition [69] orientiert, nach der sie als Ver-
hältnis korrekt klassifizierter Instanzen zur Gesamtzahl definiert ist. 

Um konsistente Vergleiche zu ermöglichen, erfolgt eine feldspezifische Normali-
sierung der extrahierten Daten nach den in Tabelle 5.1 definierten Regeln. 

Feld Normalisierung 

Datum Konvertierung in das ISO-Format YYYY-MM-DD. 

Betrag Vergleich als numerische Float-Werte. 

Rechnungsnummer Entfernung aller Leerzeichen sowie Umwandlung von Gedankenstrichen 
(–) in Bindestriche (-), um formatbedingte Unterschiede, etwa zwischen 
„RE–2024/001“ und „RE-2024 / 001“, zu vermeiden. 

Tabelle 5.1 Normalisierungen 

Neben der feldspezifischen Betrachtung werden die Ergebnisse auch in aggre-
gierter Form bewertet. Ergänzend zur !"#$%&&	())*$%)+ wird eine 

,-)*.#/0	())*$%)+ ermittelt, bei der ein Dokument nur dann als korrekt gilt, 
wenn alle drei geprüften Felder (Rechnungsnummer, Datum, Betrag) fehlerfrei 
extrahiert wurden. Diese strenge Metrik spiegelt den realen Business-Impact wi-
der, da bereits ein einzelner Fehler zu nachgelagerten Prozessproblemen führen 
kann.  
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Zur Sicherstellung einer einheitlichen Auswertung sind alle verwendeten Metriken 
wie folgt definiert: 

Overall Accuracy: Verhältnis korrekt extrahierter Felder zur Gesamtzahl geprüf-
ter Felder, liefert einen Überblick über die generelle Extraktionsqualität. 

Overall	Accuracy =
Anzahl	korrekt	extrahierter	Felder	über	alle	Dokumente

Gesamtzahl	geprüfter	Felder	über	alle	Dokumente
 

Document Accuracy: strenge Metrik, bei der ein Dokument nur dann als kor-
rekt gilt, wenn alle Felder fehlerfrei extrahiert wurden. 

Document	Accuracy =
Anzahl	Dokumente	mit	allen	Feldern	korrekt

Gesamtzahl	geprüfter	Dokumente
 

Number, Date und Amount Accuracy: Feldspezifische Genauigkeiten, die ge-
trennt für Rechnungsnummer, Rechnungsdatum und Rechnungsbetrag ausge-
wiesen werden. 

Number	Accuracy =
Anzahl	Dokumente	mit	korrekter	Rechnungsnummer

Gesamtzahl	geprüfter	Dokumente
 

Date	Accuracy =
Anzahl	Dokumente	mit	korrektem	Rechnungsdatum

Gesamtzahl	geprüfter	Dokumente
 

Amount	Accuracy =
Anzahl	Dokumente	mit	korrektem	Rechnungsbetrag

Gesamtzahl	geprüfter	Dokumente
 

5.3.3  Tokenverbrauch / Laufzeit 

Neben der reinen Extraktionsqualität werden auch Tokenverbrauch und Verar-
beitungsdauer je Dokument erfasst und in der Evaluationsplattform ausgewertet. 
Diese Kennzahlen dienen der ergänzenden Beurteilung von Wirtschaftlichkeit und 
Effizienz der Strategien, stehen jedoch nicht im Mittelpunkt dieser Arbeit. Eine 
direkte ökonomische Bewertung, beispielsweise in Form einer Abwägung zusätz-
licher Kosten oder Laufzeit pro Prozentpunkt höherer Genauigkeit, erfolgt nicht. 
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5.3.4  Signifikanzprüfung 

Zur Bewertung der Unterschiede zwischen den getesteten Extraktionsstrategien 
wird der McNemar-Test verwendet [70]. Er eignet sich für gepaarte Daten und 
betrachtet nur die Fälle, in denen sich die Systeme unterscheiden, also wenn ein 
Modell korrekt und das andere falsch liegt. Der Test wird sowohl für Vergleiche 
mit der OCR-Baseline (Gini) als auch für direkte Vergleiche zwischen den LLM-
Strategien eingesetzt. Neben dem 1 −X#$0 werden das Odds-Ratio (b/c) mit 95-
%-Konfidenzintervall sowie der zugehörige Y²-Wert angegeben [71]. Um zufällige 
Befunde bei mehreren Tests zu vermeiden, wird die Holm-Bonferroni-Korrektur 
angewendet [72]. 

Die Signifikanzprüfung erfolgt nur auf Dokumentebene. Für die !"#$%&&	())*$%)+ 
wird kein Test berechnet, da die Feldinstanzen eines Dokuments voneinander 
abhängen und somit keine unabhängige Stichprobe darstellen. Zur Darstellung 
der Unsicherheit werden Wilson-Konfidenzintervalle der ,-)*.#/0	())*$%)+ an-

gegeben [73], [74]. Diese Methode ist gegenüber der klassischen Normalappro-
ximation robuster, insbesondere wenn die beobachtete ())*$%)+ sehr hoch oder 
sehr niedrig ist und die resultierende Verteilung entsprechend asymmetrisch wird. 
Das 95-Prozent-Intervall berechnet sich nach der Wilson-Formel. 

[\ =
1̂ +

_!
2/

± _b
1̂(1 − 1̂)

/
+
_!
4/!

1 +
_!
/

 

Formel 5.1 Wilson-Formel 

Hierbei bezeichnet 1̂ den beobachteten Anteil, / die Stichprobengröße und _ das 
entsprechende Quantil der Standardnormalverteilung (für 95% gilt _ = 1,96). Ein 
Ergebnis gilt als statistisch signifikant, wenn der 1 −X#$0 nach Holm-Korrektur 

kleiner als 0,05 ist. 

5.4 Stichprobenstrategie 

Die Auswahl und Zusammenstellung der Datensätze folgt einer zweistufigen 
Stichprobenstrategie, die sowohl die iterative Optimierung der Extraktionsstrate-
gien als auch eine belastbare, repräsentative Endbewertung sicherstellen soll. 
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Dieses Vorgehen orientiert sich an etablierten Prinzipien der Machine-Learning-
Evaluation, bei denen ein Trainings- bzw. Entwicklungsdatensatz von einem un-
abhängigen Evaluationsdatensatz getrennt wird, um Überoptimierung zu vermei-
den und eine belastbare Aussagekraft zu sichern [75]. 

Darüber hinaus wird die Konstruktion des Developmentsets bewusst fehlerfokus-
siert angelegt. Ähnlich wie im „Hard Sample Aware Prompt-Tuning“ [76] werden 
gezielt schwierige Beispiele berücksichtigt, um die Optimierungspotenziale der 
Strategien besser sichtbar zu machen. Während im Originalansatz die Auswahl 
problematischer Instanzen über Reinforcement Learning erfolgt, setzt das hier 
verwendete Verfahren auf ein regelbasiertes Sampling. Dies gewährleistet eine 
hohe Layoutdiversität und eine breite Abdeckung extraktionskritischer Merkmale. 

 

Developmentdatensatz 

Für die Entwicklung und Optimierung der Strategien wird ein gezielt zusammen-
gestellter Developmentdatensatz mit 3000 Dokumenten verwendet. Dieser Da-
tensatz enthält bewusst einen überproportional hohen Anteil komplexer und feh-
leranfälliger Fälle. Hierzu zählen insbesondere Rechnungen mit Diskrepanzen 
zwischen den ursprünglichen OCR-Ergebnissen und den manuell korrigierten Re-
ferenzdaten sowie eine hohe Diversität an Kreditoren mit unterschiedlichen Lay-
outs. Ziel ist es, Schwächen der Modelle frühzeitig sichtbar zu machen und gezielt 
Optimierungspotenziale zu identifizieren. 

Die Größe von 3000 Dokumenten stellt einen pragmatischen Kompromiss dar, 
groß genug, um statistisch robuste Aussagen zu ermöglichen, und gleichzeitig 
klein genug, um im Entwicklungsprozess effizient eingesetzt werden zu können. 
Die Präzision lässt sich über die Statistik der Anteilsmaße begründen (vgl. Ab-
schnitt 5.3.4). Die Standardabweichung eines Anteils 1̂ ergibt sich zu 

j1̂(1 − 1̂)//. Bei einer Stichprobe von /	 = 3000 Dokumenten liegt sie selbst für 

moderate Genauigkeiten von (1̂ ≈ 0,95) Prozent bei rund 0,4 Prozentpunkten. 
Unter Anwendung der Wilson-Formel für Konfidenzintervalle (vgl. Abschnitt 
5.3.4) verengt sich die Unsicherheit damit auf etwa ±0,5 Prozentpunkte. Für sehr 
hohe Genauigkeiten in der Nähe von 99% sinkt sie auf rund ±0,3 Prozentpunkte. 
Damit lassen sich auch kleine Unterschiede zwischen Strategien verlässlich er-
kennen. 
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Evaluationsdatensatz 

Die finale Bewertung erfolgt auf einem unabhängigen Evaluationsdatensatz mit 
10.000 Dokumenten, der zufällig aus dem Gesamtdatenbestand von etwa 
400.000 Rechnungen gezogen wird. Dieser Datensatz repräsentiert den realen 
Einsatzkontext und dient als Grundlage für die abschließende praxisnahe Bewer-
tung der Strategien. Durch die größere Stichprobengröße reduziert sich die sta-
tistische Unsicherheit nochmals erheblich. Bei 10.000 Dokumenten liegen die Wil-
son-Intervalle selbst bei Genauigkeiten um 95% im Bereich von nur ±0,3 
Prozentpunkten, bei höheren Anteilen sogar darunter. Auf diese Weise können 
auch sehr kleine Leistungsunterschiede zwischen Strategien zuverlässig nachge-
wiesen werden. 

Vermeidung von Überschneidungen 

Die beiden Datensätze sind strikt voneinander getrennt. Dokumente, die im De-
velopmentdatensatz enthalten sind, werden aus dem Evaluationsdatensatz aus-
geschlossen. Dadurch wird verhindert, dass Strategien implizit an bereits bekann-
ten Beispielen bewertet werden, und die finale Evaluation behält ihren Blind-Test-
Charakter. 

5.5  Evaluationsumgebung 

Für die Durchführung der Experimente kommen sowohl proprietäre als auch O-
pen-Source-Modelle zum Einsatz. Die technische Infrastruktur sowie alle Parame-
ter werden so gewählt, dass eine hohe Reproduzierbarkeit und Vergleichbarkeit 
gewährleistet sind. 

Für den Vergleich wurden in dieser Arbeit folgende Modelle verwendet:  

 

Claude 3 Sonnet (20250219) [77] 

Das Modell wird über die Infrastruktur von Anthropic ausgeführt. Da keine deter-
ministische Seed-Steuerung möglich ist, erfolgen alle Aufrufe, sofern nicht anders 
angegeben, mit den Standardparametern 0#.1#$%0*$#	 = 	0 und 	
0-1" = 1, um eine möglichst hohe Konsistenz in den Ergebnissen zu gewährleis-

ten. 
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GPT-4.1 [78] 

Die Ausführung erfolgt über die OpenAI-API. Zur Sicherstellung reproduzierbarer 
Ergebnisse wird ein fixer Seed (3333) verwendet. Die weiteren Modellparameter 
sind ebenfalls standardisiert: 0#.1#$%0*$#	 = 	0, 0-1_1	 = 	1. 

Gemma 3-IT (1B - 27B) [62] 

Die Open-Source-Modelle werden lokal über LMStudio [60] im GGUF-Format be-
trieben, das als Standardformat für quantisierte LLMs in llama.cpp-basierten Um-
gebungen etabliert ist [79]. Für alle Experimente wurden identische Parameter 
verwendet. Als Seed wird immer 3333 verwendet. Die Ausführung erfolgt auf der 
nachfolgend aufgeführten Hardware. 

Hardware 

Die Ausführung der Open-Source-Modelle erfolgt auf einer lokalen Workstation 
mit folgender Ausstattung: 

- GPU: NVIDIA GeForce RTX 4090 
- CPU: Intel Core i9-12900K (12th Gen) 
- RAM: 4× Corsair Vengeance DDR5, 32 GB, 6400 MHz, CL32 

o Software: LMStudio (v. 0.3.17) + CUDA llama.cpp (v. 1.42.0) für GGUF-
Modelle 

o LMStudio: Es wurden die Basiskonfigurationen verwendet. Lediglich die 
Kontextlänge wurde auf 8192 eingestellt und es wurde ein fester 7##o	 =
	3333 definiert. 

Diese Umgebung erlaubt es, auch große Modelle (z. B. Gemma 27B-IT) effizient 
auszuführen und sämtliche Tests lokal unter kontrollierten Bedingungen zu wie-
derholen. Proprietäre Modelle (GPT, Claude) werden über standardisierte API-
Schnittstellen angebunden. Eine zentrale Logging- und Vergleichskomponente in-
nerhalb der Evaluationsplattform gewährleistet eine einheitliche Ergebnisstruktur. 

5.6  Experimenteller Ablauf 

Der experimentelle Ablauf erfolgt vollständig innerhalb der im Rahmen dieser Ar-
beit entwickelten Evaluationsplattform. Diese ist nicht nur ein statisches Werk-
zeug, sondern wird während der Durchführung iterativ erweitert und an neue 
Anforderungen angepasst. Die Plattform entwickelt sich evolutionär mit den im 
Verlauf der Evaluation gewonnenen Erkenntnissen weiter.  



45 
 

Neue Funktionen, wie zusätzliche Metriken oder Visualisierungen, entstehen be-
darfsorientiert, um die Analyse zu verfeinern. 

Die Durchführung folgt einer klar strukturierten Abfolge, die eine systematische 
und reproduzierbare Evaluation sicherstellt: 

1. Initiale Tests (Baseline) 

Zunächst werden alle Modelle mit einem einfachen Zero-Shot-Prompt 
in unterschiedlichen Konfigurationen auf dem Developmentdatensatz 
ausgeführt. Diese Baseline dient der Identifikation offensichtlicher Feh-
lerquellen und liefert einen ersten Überblick über die Leistungsfähigkeit 
der Strategien. 

In diesem frühen Stadium wird auch der Einfluss der verwendeten 
Textextraktionsbibliothek untersucht, da die Qualität der aus den PDFs 
gewonnenen Textbasis unmittelbaren Einfluss auf die Modellleistung 
hat. Mehrere Bibliotheken werden auf einer Teilstichprobe verglichen 
(vgl. Abschnitt 7.2.3). Auf Basis dieser Ergebnisse wird die für die finale 
Evaluation verwendete Bibliothek festgelegt. 

2. Iterative Optimierung 

Auf Basis der initialen Ergebnisse werden Prompts und Konfigurationen 
gezielt optimiert. Der Developmentdatensatz ist bewusst komplex ge-
staltet (vgl. Abschnitt 5.4), um Schwächen früh sichtbar zu machen. 
Während dieser Phase werden Zero- und Few-Shot-Ansätze mit zusätz-
lichem CoT-Prompting untersucht. 

3. Finale Evaluation 

Nach Abschluss der Optimierung werden die final definierten Strategien 
unverändert auf dem unabhängigen Evaluationsdatensatz ausgeführt. 
Die strikte Trennung der Datensätze wahrt den Blind-Test-Charakter 
und folgt damit dem in Abschnitt 5.4 beschriebenen Evaluationsprinzip. 

Alle Ergebnisse werden automatisiert in der Plattform persistiert, feldspezifisch 
ausgewertet und anhand der in Abschnitt 5.3 beschriebenen Metriken verglichen. 
Nach Beginn der finalen Evaluation werden keine Änderungen mehr an den Stra-
tegien vorgenommen, um eine unverfälschte Bewertung sicherzustellen. 
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6 Evaluationsplattform 

Die Evaluation verschiedener LLM-basierter Extraktionsansätze erfordert eine 
technische Infrastruktur, die große Datenmengen effizient verarbeitet und einen 
reproduzierbaren Versuchsablauf sicherstellt. Aus diesem Grund wurde im Rah-
men dieser Arbeit eine dedizierte Evaluationsplattform entwickelt, die sämtliche 
Experimente ausführt, verwaltet und auswertet. Sie ist gezielt auf die Sicherstel-
lung von Reproduzierbarkeit, Vergleichbarkeit und Nachvollziehbarkeit der Verar-
beitungsschritte ausgerichtet und bildet damit ein Forschungsartefakt im Sinne 
der gestaltungsorientierten Wirtschaftsinformatik [66]. 

Die Plattform ist als Webanwendung auf Basis des Ruby-on-Rails-Frame-
works [80] implementiert und verwendet PostgreSQL als relationale Datenbank 
zur strukturierten und konsistenten Speicherung sämtlicher Evaluationsdaten. 
Diese Architektur unterstützt die parallele Verarbeitung großer Dokumentenmen-
gen, gewährleistet eine konsistente Datenspeicherung und ermöglicht eine lü-
ckenlose Nachvollziehbarkeit aller Verarbeitungsschritte. Die Organisation der 
Funktionalität erfolgt über zentrale Domänen-Entitäten, die verschiedene Aspekte 
des Evaluationsprozesses abbilden und ein vollständiges System zur Bewertung 
von Extraktionsverfahren bereitstellen. 

Alternative Ansätze, die auf Tabellenkalkulationen oder CSV-Dateien beruhen, 
stoßen bei der Verarbeitung von mehreren zehntausend Dokumenten schnell an 
ihre Grenzen, insbesondere in Bezug auf Performance, Automatisierung und 
strukturierten Vergleich [81]. Auch Jupyter-Notebooks bieten hierfür keine geeig-
nete Basis, da ihr Schwerpunkt stärker auf explorativer, interaktiver Arbeit liegt 
und sie weniger auf eine standardisierte und wiederholbare Versuchs-durchfüh-
rung ausgerichtet sind [82]. 

Besondere Merkmale der Evaluationsplattform sind ein flexibles Strategy-Konzept 
zur Anwendung unterschiedlicher Extraktionsansätze sowie die Integration meh-
rerer Textextraktionsbibliotheken mit Fallback-Mechanismen. Diese Funktionen 
sind speziell auf die Anforderungen einer wissenschaftlichen Evaluation zuge-
schnitten und unterstützen die in Kapitel 5 formulierten methodischen Ziele. 
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6.1 Beschreibung der Evaluationsplattform 

Die Evaluationsplattform ist das technische Kernstück der Untersuchung und 
dient der Bewertung verschiedener Extraktionsverfahren. Sie ermöglicht, unter-
schiedliche LLM-Strategien auf denselben Datensätzen auszuführen, die Ergeb-
nisse automatisch untereinander zu vergleichen und relevante Performance-Met-
riken zu berechnen. Das System folgt einem dokumentenzentrierten Ansatz, bei 
dem jedes Rechnungsdokument durch verschiedene Extraktionsstrategien verar-
beitet und die Resultate mit den vorhandenen Ground-Truth-Daten abgeglichen 
werden. Die einzelnen Funktionsbereiche der Plattform erfüllen jeweils eine spe-
zifische methodische Aufgabe. Die Dokumentenübersicht schafft Transparenz 
über alle eingespielten Belege und stellt damit die Nachvollziehbarkeit sicher. Der 
Strategiebereich ermöglicht das Anlegen neuer Strategien beziehungsweise 
Prompts, zeigt erste Kennzahlen und eröffnet Optionen für detailliertere Auswer-
tungen, wodurch Vergleichbarkeit und systematische Analyse unterstützt wer-
den. Der Sample-Set-Bereich liefert Kennzahlen zu den jeweiligen Datensätzen 
und trägt damit zur methodischen Planung und Kontrolle der Stichprobenbasis 
bei.  

Darüber hinaus weist die Plattform zentrale Eigenschaften einer „Experimentation 
Workbench“ auf, wie sie in der Softwaretechnik beschrieben wird [67]. Sie adres-
siert die dort formulierten Kernanforderungen: (R1) Unterstützung beim Setup 
von Experimenten durch die klare Definition von Strategien und Sample-Sets, 
(R2) Analyse von Ergebnissen über automatisiert erzeugte Leistungskennzahlen, 
(R3) einfache Variation von Experimenten durch erneute Ausführungen mit iden-
tischen oder modifizierten Parametern, (R4) umfassende Dokumentation aller Ar-
tefakte und Ergebnisse in einer konsistenten Datenbank, (R5) Wiederverwendung 
von Experimentkonfigurationen durch persistente Speicherung und erneute Aus-
führung sowie (R6) Erweiterbarkeit durch Integration neuer Strategien oder zu-
sätzlicher Extraktionsverfahren. Damit erfüllt die Plattform sowohl den Anspruch, 
wissenschaftliche Strenge und praktische Relevanz zu verbinden, als auch die 
methodischen Anforderungen an eine „Experimentation Workbench“. 
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6.1.1  Dokumentenübersicht 

Die Dokumentenübersicht dient zur Verwaltung und Analyse aller PDF-Rech-
nungsdokumente innerhalb der Evaluationsplattform. Sie gewährleistet, dass alle 
Experimente auf einer identischen, kontrollierten Dokumentbasis stattfinden, und 
besteht aus zwei Hauptansichten: 

Index-Ansicht: 

Die Index-Ansicht listet alle verfügbaren Dokumente auf und bietet verschiedene 
Filteroptionen, um gezielt Dokumente zu finden. Gefiltert werden kann nach 
Sample Set, Kreditor, angewendeter Strategie, vordefinierten Fehlertypen sowie 
nach markierten Favoriten. Die Übersicht zeigt für jedes Dokument grundlegende 
Informationen wie Kreditor, Anzahl vorhandener Extraktionen und ob sie als fa-
vorisiert markiert wurde, was im Zuge der Evaluation für markante Fehler oder 
komplexe Rechnungen verwendet wird. Von hier aus kann direkt über „View“ in 
die Detailansicht gewechselt werden. 

 
Abbildung 6.1 Document Index – Filtermöglichkeiten und Dokumentenübersicht 

Show-Ansicht: 

In der Show-Ansicht werden die Inhalte und Ergebnisse eines einzelnen Doku-
ments dargestellt. Sie ist in drei wesentliche Bereiche unterteilt: 

- Vergleichsansicht: Zeigt die von verschiedenen Strategien extrahierten 
Felder (Rechnungsnummer, Rechnungsbetrag, Rechnungsdatum) im di-
rekten Vergleich zur Ground Truth, GINI-Ergebnissen und LLM-Extraktio-
nen. 

- Dokumentviewer: Stellt das Original-PDF dar, um die extrahierten In-
formationen direkt zu überprüfen. 

- Extraktionsdetails: Extraktionen werden als Text bzw. als JSON gespei-
chert. Alle Extraktionen, also LLM-Extraktionen, Ground-Truth-Daten, 
Textextraktionen und Gini-Extraktionen, können hier eingesehen werden.  

  



49 
 

Über Buttons wie „Re-Extract Text“, „Re-Process All“ und „Process“ können 
Textextraktionen oder LLM-Läufe erneut gestartet werden. So lassen sich Strate-
gien optimieren oder neue Ergebnisse erzeugen. Änderungen an den Ground-
Truth-Daten werden zudem versioniert gespeichert, sodass fehlerhafte Annotati-
onen im Nachhinein ausgewertet werden können. 

 
Abbildung 6.2 Document Show – Vergleichsansicht, PDF-Dokumentviewer und Extraktionsdetails 
einer einzelnen Rechnung 

  



50 
 

6.1.2  Strategieübersicht 

Der Strategiebereich dient zur Verwaltung und Auswertung aller definierten LLM-
basierten Extraktionsstrategien. Es stellt die Vergleichbarkeit sicher, indem jede 
Strategie mit dokumentierten Parametern auf identischen Datensätzen ausge-
führt wird, und besteht aus den folgenden Bereichen: 

Index-Ansicht: 

Die Index-Ansicht listet alle vorhandenen Strategien auf und bietet Filtermöglich-
keiten nach LLM-Provider, Modell und Extraktionsmethode. Zusätzlich können 
versteckte Strategien ein- oder ausgeblendet werden. Die Übersicht zeigt für jede 
Strategie grundlegende Informationen wie ID, Name, eingesetztes Modell, ver-
wendete Methode, Anzahl durchgeführter Extraktionen und den Status (aktiv 
oder verborgen). Hier können neue Strategien erstellt, bestehende bearbeitet 
oder Ergebnisse eingesehen werden. Über die Schaltfläche „Compare Perfor-
mance“ kann ein direkter Leistungsvergleich mehrerer Strategien gestartet wer-
den. 

Compare Performance: 

Die Vergleichsansicht ermöglicht es, mehrere Strategien gleichzeitig zu analysie-
ren. Sie bietet eine Auswahl der zu vergleichenden Strategien und Sample Sets 
sowie verschiedene Visualisierungen: 

- Overall Performance Chart: Darstellung der Gesamtgenauigkeit pro 
Strategie. 

- Field Performance Breakdown: Feldspezifische Genauigkeit für Rech-
nungsnummer, Datum und Betrag. 

- Overall Performance Ranking: Tabellarische Auswertung mit Gesamt-
werten, !"#$%&&	())*$%)+, ,-6*.#/0 − ())*$%)+, p#&o − ())*$%)+, To-
kenverbrauch und Anzahl der Vergleiche. 

- McNemar-Test: statistischer Vergleich zweier Strategien auf Dokument- 
und Feldebene inklusive Kontingenztabelle, p-Werten und Odds-Ratios. 

Show-Ansicht: 

Ebenfalls über die Indexansicht ist die Detailansicht einer einzelnen Strategie zu 
erreichen. Sie ist in mehrere Bereiche unterteilt: 
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- Ausführungsübersicht: Zeigt den aktuellen Verarbeitungsstatus, die 
Anzahl der verarbeiteten Dokumente, Erfolgsrate, Gesamtgenauigkeit so-
wie den durchschnittlichen Tokenverbrauch. 

- Feldgenauigkeit: Stellt die Genauigkeit pro Feld dar, um Stärken und 
Schwächen der Strategie schnell erkennen zu können. 

- Strategy Details: Listet die verwendeten Parameter wie Modell, Tempe-
rature, Top-P, Max Tokens und Vision-Einstellungen auf. 

- Sample-Set-Statistiken: Zeigt, wie viele Dokumente je Sample Set ver-
arbeitet wurden und mit welcher Genauigkeit. 

Über die Funktion „Batch Process“ können alle offenen oder alle Dokumente eines 
Sample Sets gestartet werden. Mit „Cancel Jobs“ lassen sich laufende Jobs ab-
brechen, und über „Advanced Statistics“ werden zusätzliche Auswertungen auf 
Kreditor-Ebene sowie die Ergebnisse des McNemar-Tests zwischen Strategie- und 
Gini-Ergebnissen anzeigen. 

 
Abbildung 6.3 Strategy Show – Übersicht einer Strategie mit Verarbeitungsstatus, Feldgenauigkeit 
und Parametern 
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6.1.3  Sample-Set-Bereich 

Der Sample-Set-Bereich ermöglicht eine Übersicht über Dokumentengruppen für 
gezielte Testreihen und gliedert sich in folgende Teile: 

Index-Ansicht: 

Die Index-Ansicht listet alle vorhandenen Sample-Sets auf. Für jedes Set werden 
Name und Anzahl der enthaltenen Dokumente angezeigt. Über „View Details“ 
können Detailinformationen abgerufen werden. In der Systemübersicht wird zu-
sätzlich die Gesamtanzahl der vorhandenen Datensätze und der darin befindli-
chen Dokumente angezeigt. 

 
Abbildung 6.4 Sample Set Index – Übersicht aller verfügbaren Sets mit Dokumentenzahlen 
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Show-Ansicht: 

In der Detailansicht eines Sample-Sets werden zusätzliche Informationen ange-
zeigt: 

- Sample Set Information: Gesamtzahl der enthaltenen Dokumente, An-
zahl der LLM-Extraktionen, Infact-Extraktionen und die Anzahl der unter-
schiedlichen Kreditoren. 

- Top Sender: Auflistung der Kreditoren mit Angabe, wie viele Dokumente 
je Kreditor enthalten sind. 

Über die Funktion „Bulk Re-Extract Text“ können für alle Dokumente im Set er-
neut die Texte extrahiert werden, wobei die gewünschte Textextraktion ausge-
wählt werden kann. Ergänzend ermöglicht die Funktion „Ground Truth Impact“ 
die Analyse der Auswirkungen von Änderungen am Ground Truth. Über einen 
Button in der Detailansicht wird ein Modal geöffnet, das die GINI-Extraktionser-
gebnisse sowohl mit den ursprünglichen als auch mit den angepassten Werten 
vergleicht und damit sichtbar macht, wie stark Korrekturen einzelner Felder die 
Feld- und ,-6*.#/0	())*$%)+ beeinflussen. Neben aggregierten Kennzahlen 

werden auch feldspezifische Auswirkungen sowie betroffene Dokumente mit ih-
ren jeweiligen Änderungen angezeigt. 

 
Abbildung 6.5 Sample Set Show – Detailansicht mit Dokumentstatistik und Kreditorenübersicht  
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6.2  Datenbank-Architektur 

Die Evaluationsplattform greift für die Durchführung der Experimente auf die in 
Kapitel 5.2 beschriebene Datengrundlage zurück und überführt diese in eine für 
die Experimente geeignete technische Struktur. Dazu werden die für die Evalua-
tion benötigten Rechnungsdaten aus der relationalen Datenbank des Factoring-
Systems Infact (Abschnitt 5.2) in ein einheitliches JSON-Format exportiert und 
anschließend in die Evaluationsplattform importiert. Dieses JSON bildet sämtliche 
für aifinyo relevanten Rechnungsinformationen ab, auch über die drei untersuch-
ten Kernfelder Rechnungsnummer, Rechnungsbetrag und Rechnungsdatum hin-
aus, und stellt damit eine konsistente Datengrundlage für alle weiteren Auswer-
tungen bereit. Sowohl die ursprünglichen Gini-OCR-Extraktionen als auch die 
Infact-Referenzdaten werden in dieser Form übernommen und persistiert, was 
eine einheitliche Verarbeitung und einen direkten Vergleich der Ergebnisse  
ermöglicht, wie in Abbildung 6.6 dargestellt. 
{ 
  "invoiceNumber": "RE-20150505", 
  "invoiceDate": "2025-09-19", 
  "invoiceAmount": 354.80, 
  "invoiceAmountUst": [ 
    { 
      "rate": "19%", 
      "amount": 101.134 
    } 
  ], 
  "targetDays": null, 
  "sender": { 
    "name": "Muster GmbH", 
    "street": "Musterweg", 
    "streetNumber": "43", 
    "zip": "12345", 
    "city": "Musterdstadt" 
  }, 
  "recipient": { 
    "name": "Max Mustermann", 
    "street": "Musterstraße", 
    "streetNumber": "1", 
    "zip": "12345", 
    "city": "Musterstadt" 
  } 
} 

Abbildung 6.6 Beispielhafte JSON-Struktur einer Rechnung (vollständiges JSON siehe Anhang 1.1) 

Für die Persistenz der Daten wird eine PostgreSQL-Datenbank eingesetzt, die sich 
insbesondere durch ihre native JSON-Unterstützung und hohe Stabilität bewährt 
hat [83], [84]. Dies geschieht in sechs Tabellen, die den gesamten Evaluations-
prozess abbilden (Abbildung 6.7). Systeminterne Tabellen werden im Folgenden 
nicht berücksichtigt. Die wesentlichen Strukturen sind: 
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Abbildung 6.7 Datenbankstruktur der Evaluationsplattform 

Documents: Die Documents-Tabelle bildet das Herzstück der Datenbank und 
beinhaltet alle Rechnungsdokumente, einschließlich des Dokumentennamens, ei-
nen Verweis auf den Kreditoren sowie eines kryptographischen Hashes des PDFs 
zur eindeutigen Identifikation. Darüber hinaus werden Metadaten zur Cache- und 
Statusverwaltung persistiert, um eine konsistente Verarbeitung und Nachverfolg-
barkeit sicherzustellen. 

Creditors: Diese Tabelle bildet die Kreditoren (Rechnungsersteller) ab und wird 
vor allem für Filterungen und Auswertungen genutzt. 

ExtractionStrategy: Die ExtractionStrategies-Tabelle definiert die verschiede-
nen LLM-Ansätze mitsamt ihren spezifischen Konfigurationen, wie Modellvarian-
ten, Prompt-Templates, 0#.1#$%0*$#, 0-1_1 und .%4 − 0-6#/. Jede Strategie 
repräsentiert eine versionierte, eindeutig referenzierbare Extraktionskonfigura-
tion. 
  



56 
 

Extraction: Die Extractions-Tabelle speichert alle Verarbeitungsergebnisse mit 
präzisen Zeitstempeln, Token-Verbrauch und Laufzeiten. Die Extraktionsergeb-
nisse werden sowohl in verarbeiteter als auch in unverarbeiteter Form im JSON-
Format gespeichert und ermöglichen eine Nachverfolgung des gesamten Evalua-
tionsprozesses. Jede Extraction ist einer ExtractionStrategy und einem Document 
zugeordnet. Weiterhin werden auch die historischen Rechnungs-OCR-Extraktio-
nen sowie die Werte aus der Factoring-Software Infact in der Tabelle abgelegt. 

ExtractionComparison: Die ExtractionComparisons-Tabelle führt die automa-
tisierte Bewertung durch und vergleicht Extraction-Ergebnisse mit den Infact-Re-
ferenzdaten. Diese Tabelle speichert sowohl die Vergleichsergebnisse als auch 
die berechneten Performance-Metriken und wird durch eine Trigger-Function au-
tomatisch befüllt. 

SampleSet: Die SampleSets-Tabelle ermöglicht die flexible Gruppierung von Do-
kumenten für spezifische Experimente. Hierüber werden Development- und Eva-
luationsdatensätze abgebildet. 

DocumentSampleSet: Die DocumentSampleSets-Tabelle fungiert als Verbin-
dungstabelle zwischen Document und SampleSet und realisiert die Many-to-
Many-Beziehung für die flexible Dokumentengruppierung. Diese Struktur stellt 
über diese Entitäten sicher, dass jedes Dokument durch verschiedene Strategien 
verarbeitet und gleichzeitig in beliebigen Sample-Sets organisiert werden kann. 

 

6.3 Funktionelle Besonderheiten 
Die Evaluationsplattform enthält mehrere technische Funktionen, die den Ablauf 
der Experimente unterstützen und für reproduzierbare Ergebnisse sorgen. Ein 
wesentlicher Bestandteil ist die Nutzung von PostgreSQL-Trigger-Functions [85]. 
Dadurch werden Berechnungen und Vergleiche direkt in der Datenbank ausge-
führt, sodass Metriken automatisch aktuell gehalten und große Datenmengen ef-
fizient verarbeitet werden können. Ein weiterer Schwerpunkt liegt im flexiblen 
Umgang mit Extraktionsstrategien. Diese können mit verschiedenen Modellen, 
Parametern und Prompts konfiguriert und systematisch auf Datensätze angewen-
det werden. Dadurch lassen sich unterschiedliche Ansätze einfach testen und 
vergleichen. Zusätzlich stehen mehrere Text-Extraktionsbibliotheken und LLM-
Anbindungen zur Verfügung, deren Ergebnisse innerhalb der Plattform miteinan-
der verglichen werden können, um Unterschiede in Leistungsfähigkeit und Ro-
bustheit zu untersuchen.  
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6.3.1  Trigger für performante Auswertungen 

Um die Ergebnisse verschiedener Extraktionsmethoden zuverlässig und ohne ma-
nuelle Nacharbeit vergleichen zu können, nutzt die Evaluationsplattform Post-
greSQL-Trigger-Functions [85]. Bei jeder neuen oder aktualisierten Extraktion 
wird automatisch eine Vergleichsfunktion aufgerufen, die die relevanten Felder 
(Rechnungsnummer, Betrag, Datum) zwischen LLM-Ergebnissen, Infact-Refe-
renzdaten und gegebenenfalls historischen Rechnungs-OCR-Ergebnissen über-
prüft. 

Die Trigger sorgen dafür, dass Vergleichsdaten sofort in der Datenbank aktuali-
siert werden, ohne dass separate Verarbeitungsschritte notwendig sind. Dadurch 
stehen Metriken nahezu in Echtzeit zur Verfügung, selbst bei großen Datenmen-
gen. Gleichzeitig wird vermieden, dass alle Dokumente global neu berechnet wer-
den müssen, denn nur die betroffenen Datensätze werden geprüft und aktuali-
siert. 

Die Automatisierung erfolgt über eine zentrale Trigger-Funktion, die beim Einfü-
gen oder Aktualisieren einer Extraktion ausgelöst wird. Sie ruft für die betroffenen 
Dokumente Vergleichsoperationen auf und schreibt die Resultate in eine Ver-
gleichstabelle, sodass Abweichungen zwischen LLM-, Infact- und gegebenenfalls 
GINI-Ergebnissen unmittelbar nachvollziehbar sind (Abbildung 6.8). 
 1. Trigger: on INSERT or UPDATE of an extraction 
 2.     if extraction type is relevant (LLM, GINI, INFACT) 
 3.         call recalculate_extraction_comparison(extraction_id) 
 4.   
 5. Function recalculate_document_extraction_comparisons(document_id): 
 6.     for each extraction of type LLM or GINI in this document 
 7.         recalculate_extraction_comparison(extraction_id) 
 8.     for each extraction of type INFACT in this document 
 9.         recalculate_extraction_comparison(extraction_id) 
10.   
11. Function recalculate_extraction_comparison(extraction_id): 
12.     get extraction_row by id 
13.      
14.     if extraction_row is LLM or GINI: 
15.         find latest INFACT extraction for same document 
16.         if none exists → return 
17.         extract invoiceNumber, invoiceAmount, invoiceDate from both 
18.         if comparison already exists: 
19.             update comparison record with match results and values 
20.         else: 
21.             insert new comparison record with values 
22.   
23.     else if extraction_row is INFACT: 
24.         for each LLM or GINI extraction of same document 
25.             recalculate_extraction_comparison(extraction_id) 

Abbildung 6.8 Pseudocode der Trigger-Logik zur Neuberechnung von Extraktionsvergleichen (voll-
ständiges JSON siehe Anhang 2.1) 
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Zu beachten ist jedoch, dass diese Funktionalität Logik, die normalerweise im 
Anwendungscode zu erwarten wäre, in die Datenbank verlagert. Dadurch ent-
steht zwar ein gewisser Performance-Overhead auf Datenbankebene, wie in der 
Literatur als Nachteil von Triggern beschrieben wird [86], gleichzeitig entfällt je-
doch die Notwendigkeit zusätzlicher Verarbeitungsschritte außerhalb der Daten-
bank. Im Kontext der Evaluationsplattform überwiegt damit der Vorteil einer hö-
heren Automatisierung und unmittelbaren Reproduzierbarkeit. 

6.3.2  Strategy-Konzept und Sample-Execution 

Die Evaluationsplattform stellt ein flexibles System bereit, um verschiedene Ex-
traktionsstrategien zu definieren und auf Dokumentmengen anzuwenden. Eine 
Strategie bündelt alle relevanten Parameter für einen Extraktionslauf zusammen, 
wie das verwendete Modell, die LLM-spezifischen Parameter (0#.1#$%0*$#, 	
0-1 − 1, .%4 − 0-6#/7) und das jeweilige Prompt-Template. Abbildung 6.9 ver-
anschaulicht beispielhaft die Konfiguration einer solchen Strategie.  

Abbildung 6.9 Beispiel-Dialog zur Konfiguration einer Extraktionsstrategie (Strategie-Name, Mo-
dell, Parameter und Prompt-Template) 



59 
 

Prompts können dabei Platzhalter enthalten, die beim Ausführen der Strategie 
automatisch mit den Inhalten des jeweiligen Dokuments befüllt werden. Dazu 
stehen vordefinierte Variablen wie $0#40 (Textextraktion) oder $-)$_0#40 (OCR-

Textextraktion) zur Verfügung. So kann dieselbe Konfiguration für beliebig viele 
Dokumente genutzt und systematisch getestet werden. 

Die Ausführung der Strategien erfolgt über ein Queue-System. Jedes Dokument 
des gewählten Sample Sets wird dabei an die LLM-Schnittstelle übergeben und 
das Ergebnis in der Datenbank gespeichert. Bei Fehlern kommen automatische 
Wiederholungsversuche mit Backoff-Strategie (schrittweise verlängerte Wartezeit 
zwischen erneuten Anfragen) zum Einsatz, um eine möglichst vollständige Verar-
beitung zu erreichen. 

6.3.3  Text Extraction Libraries 

Die Textextraktion aus PDF-Dokumenten ist ein entscheidender Schritt vor der 
eigentlichen LLM-Verarbeitung. Fehler oder unvollständige Texte in dieser Phase 
wirken sich direkt auf die Qualität der Ergebnisse aus. Daher bietet die Evalua-
tionsplattform mehrere Extraktionsbibliotheken, die verwendet werden können. 

Die Auswahl erfolgt manuell über die Benutzeroberfläche (siehe Abbildung 6.10). 
Aktuell stehen folgende Optionen zur Verfügung: 

Bibliothek Version Konfiguration & Settings 

Pdfplumber 
[87] 

 0.7.0 Extraktionsmethode: page.extract_text() 
Layout-Parameter: Keine  
Fallback-Schwelle: 20 Zeichen pro Seite 
Fallback-Mechanismus: PyMuPDF (~1%) 

pdfminer.six 
[22] 

 20221105 Extraktionsmethode: extract_text() 
Layout-Parameter: LAParams()  
Fallback-Schwelle: 20 Zeichen pro Seite 
Fallback-Mechanismus: PyMuPDF (~1%) 

PyMuPDF [88]  1.23.0 Extraktionsmethode: page.get_text() 
Layout-Parameter: Keine Blöcke/Strukturierung 
Fallback-Schwelle: Keine (konnte jedes Dokument auslesen) 

pypdfium2 
[89] 

 4.18.0 Extraktionsmethode: get_textpage() + get_text_range() 
Layout-Parameter: Standard-Lesereihenfolge 
Fallback-Schwelle: Keine (konnte jedes Dokument auslesen) 

Tabelle 6.1a Textextraktions Bibliotheken 
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Bibliothek Version Konfiguration & Settings 

pdf-reader 
(Ruby) [23] 

2.14.1 Extraktionsmethode: page.text 
Layout-Parameter: Standard Layout-Optionen 
Fallback-Schwelle: Keine  
Fallback-Mechanismus: HexaPDF-Reparatur bei Fehlern 

Tesseract OCR 
[25] 

5.5.1 Extraktionsmethode: pytesseract.image_to_string() 
Layout-Parameter: --oem 3 --psm 6,3,4,1 (Fallback-Modi) 
Fallback-Schwelle: 5 Zeichen pro Seite 
Fallback-Mechanismus: Multiple PSM-Modi + Sprachen  

Tabelle 6.1b Textextraktions Bibliotheken 

Diese Bibliotheken können je nach Experiment und Dokumententyp gezielt ein-
gesetzt werden. Durch den direkten Vergleich lassen sich Unterschiede in der 
Qualität und Robustheit der Textextraktion untersuchen, bevor die eigentliche 
LLM-Verarbeitung erfolgt. Als Standard-Fallback kommt PyMuPDF zum Einsatz, 
da es sich als besonders robust zeigt und alle vorliegenden Dokumente verarbei-
ten kann. 

 
Abbildung 6.10 Auswahl des Text-Extraktors bei der erneuten Textextraktion für ein komplettes 
Sample-Set 
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6.4  Architektur 

Die technische Architektur der Evaluationsplattform folgt einem modularen, ser-
viceorientierten Aufbau und ist speziell für die Durchführung groß angelegter wis-
senschaftlicher Experimente mit Rechnungsdokumenten konzipiert. Sie kombi-
niert eine Rails-basierte Webanwendung mit asynchronen Hintergrundprozessen, 
die eine parallele und skalierbare Verarbeitung mehrerer Dokumente gleichzeitig 
ermöglichen. 

Die Architektur ist klar in Schichten gegliedert und trennt Datenhaltung, Ge-
schäftslogik und die Anbindung externer LLM-Dienste voneinander. Diese Struk-
tur erleichtert nicht nur die Erweiterung um neue Extraktionsstrategien oder Ana-
lysefunktionen, sondern trägt auch zur Wartbarkeit und langfristigen Stabilität 
des Systems bei. 

Durch die Service-Schicht und die einheitliche LLM-Anbindung werden die Verar-
beitungsschritte transparent und reproduzierbar abgebildet. Damit schafft die Ar-
chitektur die Grundlage für eine präzise und effiziente Evaluation unterschiedli-
cher LLM-basierter Extraktionsansätze. 

6.4.1  Allgemeine Systemarchitektur 

Die Evaluationsplattform ist als Ruby-on-Rails-Anwendung [80] mit modularem 
Schichtaufbau realisiert und unterstützt die Verarbeitung großer Mengen an 
Rechnungsdokumenten für Extraktions- und Vergleichsexperimente. Ziel der Ar-
chitektur ist es, verschiedene LLM-Strategien systematisch anwenden und deren 
Ergebnisse effizient auswerten zu können. 

Die Architektur folgt einem modularen Schichtaufbau, der Domain Model, Appli-
cation Layer, Service Layer und Infrastruktur umfasst und in Abbildung 6.11 vi-
sualisiert ist. Das System basiert auf dem Model-View-Controller-Prinzip, ergänzt 
um eine Service-Schicht, die komplexe Logik wie die LLM-Anbindung oder asyn-
chrone Hintergrundverarbeitung kapselt. 

Für die parallele Verarbeitung großer Datenmengen werden Hintergrundjobs über 
Sidekiq [90] ausgeführt. Dadurch können mehrere tausend Dokumente verarbei-
tet werden, während die Webanwendung reaktionsfähig bleibt.  Redis [91] über-
nimmt hierbei die Verwaltung der Queues und Caching-Aufgaben und bildet da-
mit die Grundlage für eine skalierbare Hintergrundverarbeitung. 
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Die Architektur gliedert sich in vier Kernbereiche: 

- Domain Model: Zentrale Objekte wie Dokumente, Extraktionen, Strate-
gien und Vergleichsdaten. 

- Application Layer: Rails-Controller und asynchrone Hintergrundpro-
zesse zur Steuerung von Experimenten. 

- Service Layer: Verwaltung der Anbindung externer LLM-Dienste über ei-
nen DI-Container mit dynamischer Auflösung spezifischer Services (z. B. 
OpenAI, Claude, LM Studio). 

- Infrastruktur: PostgreSQL-Datenbank, Redis und lokaler Cache für effi-
ziente Speicherung und Verarbeitung. 

 
Abbildung 6.11 Systemarchitektur der Evaluationsplattform mit den zentralen Schichten und den 
angebundenen externen Diensten. 

6.4.2  LLM Service Architektur 

Die LLM-Services abstrahieren die Kommunikation mit verschiedenen Sprachmo-
dellen und stellen eine einheitliche Schnittstelle für die Extraktion bereit. Wie in 
Abbildung 6.12 dargestellt, orchestriert der ExtractionCoordinator die Service-
Auflösung über einen selbst implementierten, leichtgewichtigen DI-Container. Da 
Rails von Haus aus keinen klassischen DI-Container bietet, wird die dynamische 
Bereitstellung der Services hier über eine zentrale Mapping-Logik realisiert, was 
die modulare Integration unterschiedlicher LLM-Provider ermöglicht [92]. 
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Abbildung 6.12 LLM-Services-Architektur 

Die Services basieren auf einer abstrakten r%7#s40$%)0t-/u#$"t)#-Klasse, die 
gemeinsame Funktionalitäten wie JSON-Parsing, Fehlerbehandlung, und Daten-
validierung implementiert. Alle Services verwenden eine einheitliche 
#40$%)0_)-/0#/0-Methode. Spezialisierte Services erben von dieser Basisklasse 
und kapseln eigene Client-Implementierungen für die spezifischen API-Anforde-
rungen: 

- AnthropicExtractionService: Claude-Integration 
- OpenaiExtractionService: OpenAI GPT-Integration 
- LmStudioExtractionService: Modelle über LMStudio 

Die konkrete Implementierung dieser Service-Auflösung ist in Abbildung 6.13 dar-
gestellt. 
 1. class ExtractionCoordinator 
 2.     def initialize(container: DiContainer.instance) 
 3.       @container = container 
 4.     end 
 5.   
 6.     def extract(document_id:, strategy_name:) 
 7.       strategy = find_strategy(strategy_name) 
 8.       service = @container.resolve(strategy.extraction_method) 
 9.       service.call(document_id: document_id, strategy_name: strategy_name) 
10.     end 
11.   end 
12.   
13.   class DiContainer 
14.     def resolve(key) 
15.       service_class = @services[key.to_s] 
16.       service_class.new 
17.     end 
18.   end 

Abbildung 6.13 Implementierung der dynamischen Service-Delegation im ExtractionCoordinator 
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6.4.3  Response Parsing 

Ein zentraler Bestandteil der Extraktionslogik ist die zuverlässige Verarbeitung der 
Modellantworten. Obwohl die Prompts ein eindeutiges JSON-Format vorschrei-
ben, halten sich die LLMs in der Praxis nicht immer strikt daran. 

Abbildung 6.14 bis 6.16 zeigen typische Abweichungen, die in den Antworten der 
Modelle auftreten können. Dazu zählen unnötige Array-Wrapper, mehrfach ver-
schachtelte JSON-Objekte und fehlerhafte Klammerungen. 

Antwort in einem überflüssigen Array 
```json[ { "invoiceNumber": "4388", "invoiceDate": "2023-11-06", "invoiceAmount": 445.89 
}]``` 

Abbildung 6.14 Erwartetes JSON in einem Array 

Mehrere Objekte werden in einem Array zurückgegeben 
```json[ { "invoiceNumber": "1085", "invoiceDate": "2022-11-10", "invoiceAmount": 18363.01 
}, { "invoiceNumber": "00-5547", "invoiceDate": "2022-10-01", "invoiceAmount": 98.10 },... 

Abbildung 6.15 Mehrere korrekte JSONs in einem Array 

Fehlerhafte Klammerung mit überzähligen Zeichen am Ende, wodurch  
die JSON-Struktur ungültig wird 
{"invoiceNumber": "202158756", "invoiceDate": "2021-04-28", "invoiceAmount": 23.09} ] } 
  

Abbildung 6.16 invalides JSON 

Diese Beispiele verdeutlichen, dass Modellantworten nicht nur in Markdown-Blö-
cke eingebettet sein können, sondern auch durch zusätzliche Arrays unvollstän-
dige Strukturen oder fehlerhafte Klammerungen problematisch werden. 

Die zugrunde liegende Implementierung ist im Laufe der Entwicklung der Extrak-
tionsstrategien sukzessive erweitert worden und bildet inzwischen ein robustes 
Handling unterschiedlichster Ausgabeformate ab. Bei optimierten Prompts treten 
die genannten Fälle seltener auf, lassen sich jedoch nicht vollständig vermeiden. 
Ein Vergleich der Modelle zeigt deutliche Unterschiede in der Formatkonformität. 
Kleinere Modelle wie Gemma 3 1B liefern nur in rund 90% der Fälle direkt valides 
JSON und knapp 10% müssen über Fallback-Mechanismen verarbeitet werden. 
Bei Gemma 3 4B steigt die Erfolgsquote bereits auf etwa 98%. Leistungsstärkere 
Modelle wie GPT oder Claude halten sich nahezu vollständig an die Spezifikatio-
nen und erreichten im Test eine Erfolgsquote von 100%. Diese Unterschiede sind 
in Abbildung 6.17 dargestellt. 
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Abbildung 6.17 Verteilung der Parsing-Ergebnisse (detaillierte Werte siehe Tabelle A.3.1 
im Anhang) 

Der in der Klasse BaseExtractionService implementierte Parsing- und Norma-

lisierungs-Prozess arbeitet mehrstufig. Abbildung 6.18 zeigt die zugrunde lie-
gende Logik in Pseudocode-Form. Zunächst entfernt das System mögliche Mark-
down-Formatierungen und prüft den bereinigten Inhalt auf vollständige JSON-
Strukturen. Liegt kein valides JSON vor durchsucht es die Antwort mithilfe regu-
lärer Ausdrücke nach eingebetteten JSON-Blöcken und validiert diese einzeln. 
Schlägt auch dies fehl extrahiert das System als Fallback den Textbereich zwi-
schen der ersten öffnenden und der letzten schließenden geschweiften Klammer 
und unterzieht diesen erneut einer JSON-Validierung 

Sobald eine valide Struktur vorliegt entfernt das System gegebenenfalls unnötige 
äußere Arrays mit nur einem Element und normalisiert die extrahierten Daten. 
Dabei verarbeitet es verschachtelte Strukturen rekursiv entfernt Steuerzeichen 
und überführt Datums- und Zahlenangaben in ein einheitliches Format. Auf diese 
Weise wird sichergestellt, dass auch unvollständig formatierte oder fehlerhaft 
strukturierte Antworten konsistent weiterverarbeitet werden können. 
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 1. function parse_llm_response(content): 
 2.     if content is empty: 
 3.         return error 
 4.   
 5.     json_content = extract_json_from_response(content) 
 6.     if json_content is null: 
 7.         return as_text(content) 
 8.   
 9.     parsed = parse_json(json_content) 
10.     parsed = unwrap_single_array(parsed) 
11.     return normalize_extracted_data(parsed) 
12.   
13.   
14. function extract_json_from_response(content): 
15.     remove_markdown_formatting(content) 
16.     if is_valid_json(content): 
17.         return content 
18.   
19.     for pattern in json_patterns: 
20.         for match in find_matches(content, pattern): 
21.             if is_valid_json(match): 
22.                 return match 
23.   
24.     extract_between_first_and_last_brace(content) 
25.     if is_valid_json(extracted_part): 
26.         return extracted_part 
27.   
28.     return null 
29.   
30.   
31. function normalize_extracted_data(data): 
32.     recursively clean strings 
33.     normalize dates & numbers 
34.     return cleaned_data 
35.   

Abbildung 6.18 Parsinglogik Pseudocode 



67 
 

7 Durchführung 

Die Durchführung stellt die Brücke zwischen theoretischer Fundierung und prak-
tischer Umsetzung dar. Sie zeigt, wie die in den vorangegangenen Kapiteln ent-
wickelten Grundlagen in konkrete Experimente überführt werden und welche Er-
kenntnisse sich daraus gewinnen lassen. Im Zentrum steht die Untersuchung von 
LLM-basierten Extraktionsansätzen im Vergleich zu etablierten OCR-Verfahren. 
Durch die Anwendung auf einen umfangreichen und heterogenen Dokumenten-
korpus werden Unterschiede in Genauigkeit, Robustheit und Effizienz sichtbar 
gemacht. 

Ein wesentlicher Bestandteil ist die methodische Konstruktion eines belastbaren 
Evaluationsdatensatzes, der die Vielfalt realer Geschäftsdokumente widerspiegelt 
und damit als Grundlage für die Validität der Ergebnisse dient. Darauf aufbauend 
kommt die entwickelte Evaluationsplattform zum Einsatz, die eine konsistente 
Ausführung, Verwaltung und Auswertung der Experimente ermöglicht. Mit ihr las-
sen sich erste Leistungswerte erheben, die als Ausgangspunkt für die Beurteilung 
sowohl klassischer OCR-Ansätze als auch neuartiger LLM-Methoden dienen. An-
schließend werden Optimierungsverfahren untersucht, die das Potenzial der LLM-
Ansätze gezielt erweitern. Dazu gehören Variationen im Prompt Design, der Ein-
satz von Few-Shot-Beispielen sowie fortgeschrittene Strategien wie Multi-Modal 
Consensus und Multi-Agent-Orchestrierung. Auf diese Weise wird nachvollzieh-
bar, wie sich durch schrittweise Anpassungen die Extraktionsqualität verbessern 
lässt und welche methodischen Implikationen sich daraus ergeben.  

7.1 Testdatensatz-Engineering 

Um den in Abschnitt 5.4 beschriebenen zweistufigen Stichprobenansatz umzuset-
zen, basiert die Evaluation nicht auf allen rund 400.000 verfügbaren Rechnungs-
dokumenten. Stattdessen werden zwei gezielt erstellte Teildatensätze verwendet, 
ein Developmentdatensatz mit 3.000 Rechnungen höherer Komplexität und ein 
Evaluationsdatensatz mit 10.000 zufällig gezogenen Dokumenten zur objektiven 
Leistungsbewertung. 
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Die Konstruktion des Developmentdatensatz folgt dem Prinzip einer gezielten 
Fehlerfokussierung. Ausgehend von einer Analyse der Ergebnisse des bestehen-
den Rechnungs-OCR werden Rechnungen mit extraktionskritischen Merkmalen 
ausgewählt. Um eine hohe Layoutvielfalt sicherzustellen, verteilt sich die Auswahl 
auf eine große Bandbreite von Kreditoren, was eine entsprechend breite Diversi-
tät an Layouts und Designs gewährleistet (vgl. Abschnitt 5.1). 

Die Verwendung eines weiteren, vom Developmentdatensatz unabhängigen Eva-
luationsdatensatz dient der Validierung der entwickelten Verfahren auf einem 
breiteren und unvoreingenommenen Datensatz. Diese Trennung stellt sicher, 
dass die Strategien nicht implizit an bereits bekannten Beispielen getestet werden 
und die finale Bewertung den Charakter einer unabhängigen Validierung behält. 

Die Erstellung der Datensätze wird im Folgenden entlang der Auswahl- und Fil-
terkriterien dargestellt. Die Darstellung erfolgt in konsolidierter Form, um die 
Nachvollziehbarkeit des Vorgehens zu gewährleisten. 

7.1.1  Rechnungskomplexität 

Die Fehlerfokussierung basiert auf der Diskrepanz zwischen Rechnungs-OCR und 
Infact-Referenzdaten als Indikator für Extraktionsschwierigkeit. Dokumente mit 
Abweichungen zwischen diesen beiden Systemen weisen typischerweise komple-
xere Layouts, ungewöhnliche Formatierungen oder andere Faktoren auf, die das 
bestehende Extraktionsverfahren vor Herausforderungen stellen (vgl. Abschnitt 
8.3.1). 

Für die diskrepanzbasierte Klassifikation kommt eine binäre Bewertung zum Ein-
satz. Dokumente mit identischen Ergebnissen zwischen Rechnungs-OCR und In-
fact werden als „GOOD“ klassifiziert, solche mit Abweichungen als „BAD“. Diese 
Kategorisierung bildet die Grundlage für die gezielte Auswahl schwieriger Fälle 
im Developmentdatensatz. 
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7.1.2  Vorbereitung und Datenbereinigung 

Die Aufbereitung der ursprünglich 767.817 Rechnungsdokumente in evaluations-
taugliche Datensätze erfolgt durch die Erstellung der Materialized View 
1$#ot)0t-/_$#7*&07_1-&t7ℎ#o, die eine Filterung und Bereinigung der Daten bein-

haltet. Diese View kombiniert und normalisiert die relevanten Rechnungs-OCR-
Ergebnisse und Infact-Referenzdaten und ermöglicht dadurch eine effiziente Ab-
frage und Analyse. Die in Abschnitt 7.1.1 eingeführte GOOD/BAD-Klassifikation 
wird wie in Abbildung 7.1 dargestellt umgesetzt. 
 1. CREATE MATERIALIZED VIEW prediction_results_polished AS 
 2. SELECT documents.id, 
 3.        e_t.content -> 'text'::TEXT                AS text, 
 4.        (e_g.content -> 'invoiceNumber')::TEXT     AS gini_invoiceNumber, 
 5.        (e_i.content -> 'invoiceNumber')::TEXT     AS infact_invoiceNumber, 
 6.        -- Feldvergleiche und Diskrepanzermitlung 
 7.        CASE WHEN (e_g.content -> 'invoiceNumber')::text =  
 8.                  (e_i.content -> 'invoiceNumber')::text 
 9.             THEN 'GOOD' ELSE 'BAD' END            AS number_prediction, 
10.        -- ... 
11.        CASE WHEN (e_g.content ->> 'invoiceAmount') ~ '^\d+(\.\d+)?$' 
12.                AND (e_i.content ->> 'invoiceAmount') ~ '^\d+(\.\d+)?$' 
13.                AND (e_g.content ->> 'invoiceAmount')::TEXT != 'null' 
14.                AND (e_g.content ->> 'invoiceAmount')::TEXT::FLOAT::TEXT = 
15.                    (e_i.content ->> 'invoiceAmount')::TEXT::FLOAT::TEXT 
16.             THEN 'GOOD' ELSE 'BAD' END            AS amount_prediction, 
17.        -- ... 
18.        CASE WHEN (e_g.content -> 'invoiceDate')::text = (e_i.content -> 'invoiceDa-
te')::text 
19.             THEN 'GOOD' ELSE 'BAD' END AS date_prediction,  

Abbildung 7.1 Schematische Darstellung der GOOD/BAD-Klassifikation (vollständiges SQL-Query 
im Anhang 2.2) 

Die Diskrepanzermittlung erfolgt feldspezifisch mit entsprechenden Vergleichslo-
giken. Während Rechnungsnummern und Datumsangaben durch direkte String-
Vergleiche bewertet werden, erfordert die Betragsvalidierung zusätzliche nume-
rische Prüfungen. Das Regex-Pattern ^\d+(\.\d+)?$ stellt sicher, dass nur nu-

merische Inhalte verarbeitet werden. Diese Validierung ist technisch zwingend 
erforderlich, da andernfalls ein Typenumwandlung von nicht-numerischen Wer-
ten zu einem SQL-Fehler führen würde. Die Typenumwandlung 
(::FLOAT::TEXT) sorgt zudem für eine einheitliche Darstellung (z. B. „123.40“ 

→ „123.4“) und verhindert Vergleichsfehler. Diese Validierungslogik wurde in 
Vorversuchen empirisch geprüft und erwies sich als zuverlässig, da fehlerhafte 
oder inkonsistente Feldwerte so effizient ausgeschlossen werden können. 
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Die Entfernung nicht evaluierbarer Dokumente basiert, wie in Abbildung 7.2 dar-
gestellt, auf den zuvor extrahierten Texten aus den PDF-Dateien: 
 1.        -- Weitere Feldvergleiche... 
 2. FROM documents 
 3. JOIN extractions e_t ON documents.id = e_t.document_id  
 4.      AND e_t.extraction_type = 'EXTRACT_TEXT' 
 5.      AND length((e_t.content -> 'text')::TEXT) > 25 
 6.      AND (e_t.content -> 'text')::TEXT NOT LIKE '(cid:%' 
 7.      AND (e_t.content -> 'text')::TEXT NOT LIKE '%(cid:%' 
 8.      AND (length((e_t.content -> 'text')::TEXT) -  
 9.           length(replace((e_t.content -> 'text')::TEXT, '\ufffd', ''))) < 30 
10.      AND (e_t.content -> 'text')::TEXT NOT LIKE '%tundenzettel%' 
11.      AND ((e_t.content -> 'text'::text)::text) !~~ '%Negatives Abrechnungskont%'::text 
12.      AND length((e_t.content -> 'text')::TEXT) < 10000  

Abbildung 7.2 Schematische Darstellung der Filterung nicht evaluierbarer Dokumente (vollständi-
ges SQL-Query im Anhang 2.2) 

Die Bereinigung beginnt mit dem Ausschluss unvollständiger Daten. Dokumente, 
bei denen entweder Gini- oder Infact-Ergebnisse fehlen, werden nicht berück-
sichtigt. Ebenfalls entfernt werden Fälle mit fehlendem Absendernamen oder ei-
nem Absender, der mit „aifinyo“ beginnt, um interne Test- und Beispieldoku-
mente auszusortieren. 

Im nächsten Schritt werden technische Filter angewendet. Dazu gehört der Aus-
schluss sehr kurzer Texte unter 25 Zeichen, die meist auf bildbasierte Inhalte 
hinweisen und sich nicht sinnvoll textbasiert verarbeiten lassen. Sehr lange Texte 
über 10.000 Zeichen werden ebenfalls ausgeschlossen, um unnötig große Kon-
texteingaben zu vermeiden, die die Verarbeitung verlangsamen und bei lokalen 
Modellen wie Gemma 3 Hardwaregrenzen ausreizt. Weitere technische Filter 
schließen Dokumente mit typischen Rendering-Problemen wie CID-Font-Artefak-
ten oder einer hohen Anzahl an Unicode-Ersatzzeichen (�) aus, da diese in Tests 
gar nicht oder nur unzureichend extrahiert werden können. Ergänzend kommen 
semantische Filter zum Einsatz, die Dokumente mit für die Evaluation irrelevanten 
Inhalten aus dem Datenbestand entfernen. Dazu zählen etwa Stundenzettel oder 
Abrechnungen des negativen Abrechnungskontos, die im Geschäftsprozess der 
aifinyo AG einen Sonderfall darstellen. Die gewählten Grenzwerte (z. B. minimale 
Textlänge von 25 Zeichen, maximale Textlänge von 10.000 Zeichen, Unicode-
Schwelle von 30 Ersatzzeichen) basieren auf Erfahrungswerten aus Vorversuchen 
und dienen dazu, eine Balance zwischen Datenqualität und Datenquantität si-
cherzustellen.  
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Die Auswirkungen dieser Filterungen auf den Gesamtdatenbestand mit erfolgrei-
cher Textextraktion sind in Tabelle 7.1 dargestellt. 
Filterkategorie Anzahl Doku-

mente  
Anteil am Gesamtdaten-
bestand 

Fehlende Gini- oder Infact-Ergebnisse 316 943 41,28% 
Fehlender Absendername, Absender beginnt 
mit aifinyo 

2 420 0,54% 

Textlänge kleiner als 25 Zeichen 34 670 7,73% 
Textlänge größer als 10.000 Zeichen 8 208 1,83% 
CID-Font-Artefakte, viele Unicode-Ersatzzei-
chen 

12 085 2,69% 

Stundenzettel, negatives Abrechnungskonto 14 836 3,31% 
Gesamt entfernt 68 598 15,30% 
Verbleibend 379 856 84,70% 

Tabelle 7.1 Auswirkungen der Filterung auf den Gesamtdatenbestand 

Nach Abschluss dieser Bereinigung verbleibt eine qualitätsgesicherte Basis von 
379.856 evaluationstauglichen Dokumenten mit klarer GOOD/BAD-Klassifikation 
je zu untersuchendem Extraktionsfeld. 

7.1.3  Evaluationsdatensatz 

Der Evaluationsdatensatz wird zufällig aus den Daten der prediction_-
results_polished-View gezogen und unterliegt keiner weiteren Verzerrung 

durch zusätz-liche Filter oder Komplexitätsbewertungen. Die Erstellung erfolgt 
vor dem Developmentdatensatz, wodurch sichergestellt ist, dass keine 
Überschneidungen oder Duplikate zwischen den beiden Sets auftreten. 

Die Auswahl erfolgt einmalig per RANDOM()-Sortierung (Abbildung 7.3 Materialized 

View zur Erstellung des ) und wird in einer Materialized View persistiert: 
1. CREATE MATERIALIZED VIEW evaluationsset AS 
2. SELECT * FROM prediction_results_polished 
3. ORDER BY RANDOM() LIMIT 10000; 

Abbildung 7.3 Materialized View zur Erstellung des Evaluationsdatensatzes 

Durch die Persistierung in einer Materialized View bleibt die Zusammensetzung 
des Sets über alle Experimente hinweg konstant. Dieses Vorgehen verhindert 
unbeabsichtigte Datenverschiebungen zwischen Evaluationsphasen und gewähr-
leistet reproduzierbare Vergleichsbedingungen.  
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Der Abgleich der Extraktionsmetriken mit dem Gesamtdatenbestand bestätigt die 
Repräsentativität des 10.000-Dokumente-Samples (Tabelle 7.2 Vergleich der Extrakti-

onsmetriken zwischen Gesamtdatenbestand und ). Zusätzlich deckt der Evaluationsda-
tensatz 508 unterschiedliche Kreditoren ab, wodurch eine breite Layoutvielfalt 
abgebildet wird. Damit wird sichergestellt, dass das Set nicht nur hinsichtlich der 
Metriken, sondern auch strukturell repräsentativ für den Gesamtdatenbestand ist. 
Set !"#$%&&	()) *+)	()) ,-./#$	()) *%0#	()) (.+-10	()) 
Evaluations-
datensatz 

95,53% 87,24% 96,72% 93,37% 96,51% 

All 95,1% 86,3% 96,4% 92,6% 96,2% 
Tabelle 7.2 Vergleich der Extraktionsmetriken zwischen Gesamtdatenbestand und Evaluationsda-
tensatz 

Die geringen Abweichungen zwischen Evaluationsdatensatz und Gesamtdatenbe-
stand belegen eine hinreichende Repräsentativität. Für die Bewertung der Ex-
traktionsleistung kommen sowohl feldspezifische Genauigkeiten als auch doku-
mentbasierte Metriken zum Einsatz. 

Die Bewertung erfolgt anhand der in Abschnitt 5.3.2 definierten Extraktions-Met-
riken. Insbesondere die ,-)*.#/0	())*$%)+ stellt einen strengen Maßstab dar, 
da bereits ein einzelner Fehler in Rechnungsnummer, Datum oder Betrag zur 
Abwertung des gesamten Dokuments führt. Während die Einzelfelder Genauig-
keiten zwischen 93% und 97% erreichen, liegt die ,-)*.#/0	())*$%)+ bei nur 
87,24%, da sich Fehlerwahrscheinlichkeiten kumulieren. Diese Werte bilden die 
Grundlage für die spätere Bewertung der LLM-Modelle. 

7.1.4  Developmentdatensatz 

Das gezielte Leistungsprofil des Developmentdatensatz zeigt sich deutlich im Ver-
gleich der Extraktionsmetriken (Tabelle 7.2). 

Set !"#$%&&	()) *+)-.#10		
()) 

,-./#$		
()) 

*%0#	()) (.+-10		
()) 

Development-
datensatz 

84,01% 57,87% 85,70% 83,17% 83,17% 

All 95,1% 86,3% 96,4% 92,6% 96,2% 
Tabelle 7.3 Vergleich der Extraktionsmetriken zwischen Gesamtdatenbestand und Development-
datensatz 
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Der Developmentdatensatz wird über die Materialized View developmentset im-

plementiert. Diese realisiert eine SQL-basierte Auswahl mit Komplexitätsfokus 
und gewährleistet eine hohe Layout-Diversität durch möglichst gleichverteilte 
Kreditorenauswahl anstelle einer rein zufälligen Ziehung. Hintergrund ist die Be-
obachtung, dass eine große Anzahl unterschiedlicher Kreditoren in der Regel auch 
eine größere Vielfalt an Layouts, Tabellenstrukturen, Textanordnungen und De-
signelementen mit sich bringt (Abbildung 7.4). 
 1. CREATE MATERIALIZED VIEW developmentset AS 
 2. -- Ausschluss des Evaluationssets 
 3. WITH eval_set_ids AS ( 
 4.     SELECT id FROM evaluationsset 
 5. ), 
 6. base AS ( 
 7.     SELECT *, ROW_NUMBER() OVER () AS internal_order 
 8.     FROM prediction_results_polished 
 9.     WHERE id NOT IN (SELECT id FROM eval_set_ids) 
10. ), 
11. -- Fehlerbasierte Label-Gruppen 
12. number_good AS (SELECT id, 'number_good' AS label, internal_order FROM base WHERE num-
ber_prediction = 'GOOD'), 
13.      number_bad AS (SELECT id, 'number_bad' AS label, internal_order FROM base WHERE 
number_prediction = 'BAD'), 
14.      amount_good AS (SELECT id, 'amount_good' AS label, internal_order FROM base WHERE 
amount_prediction = 'GOOD'), 
15.      amount_bad AS (SELECT id, 'amount_bad' AS label, internal_order FROM base WHERE 
amount_prediction = 'BAD'), 
16. -- Gezielte Diversitätsstrategie 
17. sender_diverse AS  
18. (SELECT *, ROW_NUMBER() OVER  
19.  (PARTITION BY label, sender_prediction  
20.   ORDER BY internal_order) AS sender_rank 
21.  FROM joined_with_sender WHERE sender_rank = 1 
22. ), 
23. -- Fallback-Auffüllung 
24. fallback_fill AS  
25. (SELECT * 
26.  FROM (SELECT *, ROW_NUMBER() OVER  
27.        (PARTITION BY label  
28.         ORDER BY internal_order) AS group_rank 
29.        FROM joined_with_sender 
30.        WHERE id NOT IN (SELECT id FROM sender_diverse)) t 
31.  WHERE group_rank <= 500) 

Abbildung 7.4 Ausschnitte der Materialized View zur Erstellung des Developmentdaten-
satzes (vollständiges SQL Querry im Anhang 2.3) 

Die Erstellung beginnt mit dem Ausschluss aller Dokumente, die im Evaluations-
set enthalten sind. Danach erfolgt eine feldspezifische Kategorisierung nach Ex-
traktionserfolg (GOOD/BAD) für Rechnungsnummer, Betrag und Datum. Jedes 
Dokument erhält ein eindeutiges Label, beispielsweise number_bad oder 
amount_good, das als Hilfskategorie für die nachfolgende Diversitätslogik dient. 
Tritt ein Dokument in mehreren Kategorien auf, bestimmt eine Priorisierungslogik 
(ROW_NUMBER) die Zuordnung. 
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Zur Maximierung der strukturellen Vielfalt wird pro Fehlerkategorie und Kreditor 
jeweils ein Dokument ausgewählt. Bleiben pro Kategorie weniger als 500 Doku-
mente übrig, ergänzt ein Fallback-Verfahren die Auswahl. Die finale Auswahl 
kombiniert diese strukturierte Vorauswahl mit einem kleineren Anteil zufälliger 
Ergänzungen und begrenzt den Bestand anschließend auf exakt 3.000 Doku-
mente. 

Der Developmentdatensatz enthält bewusst einen höheren Anteil schwieriger 
Fälle (ca. 42%) als der Gesamtdatenbestand (14%). Die Schwierigkeit bezieht 
sich dabei auf die in Abschnitt 5.3.2 definierte ,-)*.#/0	())*$%)+, also den 
strengen Maßstab, nach dem bereits ein einzelner Fehler in Rechnungsnummer, 
Datum oder Betrag zur Abwertung des gesamten Dokuments führt. Zusätzlich 
deckt das Set 333 unterschiedliche Kreditoren ab, was die hohe Layoutvielfalt 
und strukturelle Diversität eindrucksvoll belegt. Diese Segmentierung kombiniert 
eine ausgeprägte Fehlerdiversität mit einer breiten Kreditorenbasis und schafft 
damit optimale Bedingungen für die iterative Entwicklung und Optimierung der 
LLM-basierten Extraktionsstrategien. 

7.2  Initiale Tests 

Nach der Implementierung der Evaluationsplattform beginnt die Untersuchung 
der ersten Extraktionsstrategie. Ziel dieser initialen Testphase ist nicht nur die 
Bewertung der reinen Modellleistung, sondern auch die Identifikation potenzieller 
Fehlerquellen in der Datenbasis und den vorgelagerten Verarbeitungsschritten. 
Zur Sicherstellung der Vergleichbarkeit werden in allen Modellen identische 
Prompts eingesetzt, wodurch eine faire Bewertung der Ausgangsleistung ohne 
modellspezifische Optimierungen möglich ist.  

7.2.1  Ausgangs-Performance 

Die ersten Testergebnisse liefern anhand eines einheitlichen Prompts einen di-
rekten Vergleich zwischen den eingesetzten LLMs und dem bisherigen Rech-
nungs-OCR von Gini. Die initiale Performance-Messung erfolgt zunächst auf einer 
noch nicht vollständig bereinigten Datenbasis und dient der Identifikation poten-
zieller Fehlerquellen (Abschnitt 7.3). Für die in Abbildung 7.6 dargestellten Er-
gebnisse wird jedoch die final bereinigte und nachkorrigierte Datenbasis verwen-
det, um eine konsistente Vergleichbarkeit sicherzustellen. 
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Ausgangs-Prompt: 
Das in Abbildung 7.5 gezeigte Baseline-Prompt folgt einem klassischen Zero-
Shot-Setup und fordert die Extraktion aller Basisinformationen in einem JSON-
Format an, ohne zusätzliche Beispiele oder weiterführende Instruktionen. Diese 
bewusst schlanke Form macht die reine Ausgangsleistung der Modelle sichtbar, 
bevor gezielte Optimierungen eingeführt werden. 
System: 
You are an AI that extracts invoice information and returns it as valid JSON. 
- Do NOT include markdown formatting. 
- Respond with raw JSON only. 
- Dates (invoiceDate) must be ISO date strings (YYYY-MM-DD). 
- Validate datatypes strictly. 
- ... 
  
User: 
Extract the following invoice details and return ONLY based on this JSON structure: 
{ "invoiceNumber": "String", "invoiceDate": "Date", "invoiceAmount": "Double", "sender": { 
"name": ... } 
Process the following extracted text and return ONLY the JSON: $text 
  

Abbildung 7.5 Baseline-Prompt – gekürzter Ausschnitt (vollständige Version im Anhang 1.2) 

Die Resultate in Abbildung 7.6 zeigen, dass GPT-4.1, Claude 3 Sonnet und 
Gemma 3 27B-IT die besten Ergebnisse erzielen, mit rund 97% !"#$%&&	())*$%)+ 
und über 93% ,-)*.#/0	())*$%)+. Besonders bemerkenswert ist, dass Gemma 

3 27B-IT als offenes Modell nahezu gleichauf mit den Closed-Source-Systemen 
liegt. Dies deckt sich mit den aktuellen Benchmarks vom 8. März 2025, in denen 
Gemma 3 27B-IT mit einem Elo-Score von 1339 in den Top 10 der LMSys Chatbot 
Arena geführt wird und sich dort mit Closed-Source-Modellen wie Claude 3 und 
GPT-4 messen kann [93]. Gemma 3 12B-IT liegt mit 96,04% ())*$%)+ und 

89,47% ,-)*.#/0	())*$%)+ etwas darunter. Deutlich schwächer schneiden klei-
nere Modelle wie Gemma 3 4B-IT (82,68% / 63,03%) und Gemma 3 1B-IT 
(54,25% / 24,97%) ab. Als historische Vergleichsbasis dient Gini mit 84,01% 
())*$%)+ und 57,87% ,-)*.#/0	())*$%)+. 

Alle Tests erfolgen unter identischen Parametereinstellungen, die in Tabelle 7.4 
zusammengefasst sind. 
 0#.2#$%0-$# 0+2_2 .%4_0+5#16 
Parameter 0 1 8192 

Tabelle 7.4 Parameter-Setup der Ausgangs-Performance-Experimente 
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Abbildung 7.6 Ausgangs-Performance mit Baseline Prompt (vollständige Werte im Anhang 3.2) 

Aus den ersten Tests ergibt sich eine zentrale Anpassung für die weiteren Expe-
rimente. Die Abfrage ist auf die Felder t/"-t)#w*.x#$, t/"-t)#,%0# und 
t/"-t)#(.-*/0 beschränkt (Abbildung 7.7), da diese Felder am besten annotiert 

und am zuverlässigsten validierbar sind. Gleichzeitig führt die Reduktion zu einer 
deutlich geringeren Anzahl generierter Completion-Tokens (Tokens, die das Mo-
dell als Antwort auf den Prompt produziert), was die durchschnittliche Verarbei-
tungszeit pro Dokument erheblich verkürzt. Je nach Modell sinkt die Dauer im 
Mittel um 88% bis 97%, von teils über einer Minute auf durchschnittlich 1,73 s 
bei Gemma 3 27B-IT bzw. 0,45 s bei Gemma 3 4B-IT (Abbildung 7.8). Darüber 
hinaus zeigt sich eine Verbesserung der Extraktionsgenauigkeit, insbesondere bei 
Gemma 3 4B-IT mit einem Anstieg von 82,68% auf 91,12%. 
User: 
Extract the following invoice details and return ONLY based on this JSON structure: 
{ "invoiceNumber": "String", "invoiceDate": "Date", "invoiceAmount": "Double" } 
Process the following extracted text and return ONLY the JSON: $text 

Abbildung 7.7 Ausschnitt verkürzter Prompt (vollständige Version im Anhang 1.3) 
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Abbildung 7.8 789:;<<	=>>?:;>@ und Laufzeit – Baseline vs reduzierter Prompt (vollständige Ver-
sion im Anhang 3.3) 

7.2.2  Einfluss von Parametervariationen auf die Mo-
dellleistung 

Nach der Bestimmung der Ausgangsleistung wird der Einfluss verschiedener Mo-
dellparameter auf Extraktionsqualität, Reproduzierbarkeit und Laufzeit unter-
sucht. Zum Einsatz kommt Gemma 3 4B-IT, das ein günstiges Verhältnis von 
Genauigkeit und Inferenzzeit für explorative Experimente bietet. 

Im Fokus stehen die Parameter 0#.1#$%0*$#, 0-1_1 und .%4_0-6#/7. Alle Kon-
figurationen nutzen den verkürzten Prompt (Abbildung 7.7) und werden im Zero-
Shot-Setup ausgeführt. Jede Variante wird viermal auf demselben Datensatz mit 
3.000 Rechnungen getestet, um Schwankungen durch Nichtdeterminismus zu er-
fassen. Ein fester Seed (3333) sorgt dafür, dass verbleibende Unterschiede auf 
numerische Einflüsse beim Inferenzprozess zurückzuführen sind. 

Die getesteten Konfigurationen sind in Tabelle 7.5 dargestellt: 

Tabelle 7.5 Getestete Parameterkonfigurationen für Gemma 3 4B-IT 

Strategie 0yz{y|}~�|y 0+2 − 2 .%4 − 0+5#16 
Temp 0 0 0 200 
Temp 0.1 0.1 0 200 
Top-P 1 0 1 200 
Both 1 1 1 200 
Max Tokens 50 0 0 50 
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Die drei Konfigurationen Temp 0, Top-P 1 und Temp 0.1 zeigen eine insgesamt 
hohe Reproduzierbarkeit. Bei Temp 0 sowie Top-P 1 liegen die !"#$%&& −
())*$%)+-Werte stabil zwischen 91,12% und 91,23%, die ,-)*.#/0	())*$%)+ 
zwischen 77,07% und 77,33%. Auch bei Temp 0.1 bleiben die Ergebnisse nahezu 
konstant, mit maximalen Schwankungen von 0,06 Prozentpunkten 
!"#$%&&	())*$%)+ und 0,14 Prozentpunkten ,-)*.#/0	())*$%)+). Solche mini-
malen Unterschiede werden in der Literatur als typische Rundungseffekte bei 
GPU-Inferenz beschrieben [94]. 

Besonders auffällig ist die vollständige Reproduzierbarkeit bei Both 1. In allen vier 
Durchläufen bleiben !"#$%&&	())*$%)+ und ,-)*.#/0	())*$%)+ exakt konstant 
(91,12% bzw. 77,07%). Dieser perfekte Determinismus erklärt sich durch den 
verwendeten festen Seed (3333), der auch bei stochastischen Sampling-Parame-
tern reproduzierbare Ergebnisse gewährleisten soll. Die minimalen Schwankun-
gen bei den anderen Konfigurationen (Temp 0, Temp 0.1, Top-P 1) sind daher 
umso bemerkenswerter, da diese trotz theoretisch deterministischer bzw. mini-
mal stochastischer Parameter nicht vollständig reproduzierbar sind. Dies deutet 
auf implementierungsspezifische Unterschiede in der Seed-Kontrolle bei verschie-
denen Sampling-Strategien in LM Studio hin. 

Zudem zeigen empirische Studien, dass Änderungen der Sampling-Temperatur 
im Bereich von 0.0 bis 1.0 keine signifikanten Unterschiede in Problem-Solving-
Aufgaben erzeugen [65]. Während sich diese Untersuchung auf Multiple-Choice-
Reasoning konzentriert, legen die hier erzielten Ergebnisse nahe, dass auch bei 
strukturierter Informationsextraktion moderate Parameteränderungen wenig Ein-
fluss haben. 

Die einzige Konfiguration mit klarer Verschlechterung ist die Reduktion des 
.%4_0-6#/7-Limits auf 50. Hier liegt die !"#$%&&	())*$%)+ konstant bei 5,53% 
bis 5,55%, die ,-)*.#/0	())*$%)+ zwischen 4,90% und 4,93%. Ursache ist das 
Abschneiden vieler JSON-Antworten, die dadurch nicht mehr parsbar sind. Dieses 
Ergebnis verdeutlicht die Notwendigkeit, das .%4_0-6#/7-Limit konservativ an 
der erwarteten Antwortgröße auszurichten. 
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Die Zusammenfassung der Mittelwerte und Spannweiten ist in Tabelle 7.6 Einfluss 
von Parametervariationen auf die Modellleistung bei gemma-3-4b-it (jeweils Durchschnitt aus vier 
Läufen) dargestellt. 
Konfiguration !"#$%&&		

())-$%)B(AVG)	
Spannweite *+)-.#10		

())-$%)B(AVG)	
Spannweite 

Temp 0 91,18% 91,12% –
91,23 % 

77,20% 77,07% –
 77,33% 

Temp 0.1 91,21% 91,19% –
 91,25% 

77,28% 77,10% –
 77,29% 

Top-P 1 91,19% 91,14% –
 91,25% 

77,22% 77,10% –
 77,29% 

Both 1 91,12% 91,12% –
 91,12% 

77,07% 77,07% –
 77,07% 

Max Tokens 50 5,54% 5,53% – 5,55% 4,91% 4,90% –
 4,93% 

Tabelle 7.6 Einfluss von Parametervariationen auf die Modellleistung bei gemma-3-4b-it (jeweils 
Durchschnitt aus vier Läufen) 

Zusätzlich zeigt sich, dass einzelne Antworten trotz reduzierter Zielstruktur (in-
voiceNumber, invoiceDate, invoiceAmount) bis zu 199 Tokens lang sind, bei 

einem Durchschnitt von 54 Tokens. Ursache ist, dass das Modell teilweise Arrays 
mit alternativen JSON-Formaten erzeugt. In diesen Fällen wird stets das erste 
JSON-Objekt ausgewertet. Dies verdeutlicht die Bedeutung einer gut gewählten 
.%4_0-6#/7-Obergrenze. Ein zu niedriger Wert führt zu abgeschnittenen Antwor-
ten, ein zu hoher kann unnötige Alternativen und höhere Laufzeiten erzeugen. 
Der hier gewählte Wert von 200 stellt einen angebrachten Kompromiss dar. 

Für die weiteren Experimente wird bei Gemma 3 eine Sampling-Konfiguration mit 
0#.1#$%0*$#	 = 	1, 0-1_1	 = 	1 und fixiertem Seed eingesetzt, da sie determinis-

tische Ergebnisse liefert. Proprietäre Modelle wie GPT-4 und Claude 3 werden 
hingegen mit 0#.1#$%0*$#	 = 	0, 0-1_1	 = 	1 betrieben. Die finalen Parameter 
sind in Tabelle 7.7 zusammengefasst. 

Die final verwendeten Parameter sind in Tabelle 7.7 zusammengefasst. 
Modelltyp 0#.2#$%0-$# 0+2 − 2 .%4 − 0+5#16 H##I 
Claude 3 Sonnet 0 1 200 – 
GPT-4.1 0 1 200 – 
Gemma 3 (alle Größen) 1 1 200 3333 

Tabelle 7.7 Finale Basis Parameter 
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7.2.3  Einfluss der Textextraktion auf die Modellleis-
tung 

Die Qualität der Textextraktion aus PDF-Dokumenten beeinflusst unmittelbar die 
Modellleistung, da alle Extraktionsstrategien auf dem extrahierten Text basieren. 
Unterschiede ergeben sich durch Fehler in der Zeichenerkennung, Variationen in 
der Segmentierung, den Umgang mit Zeilenumbrüchen sowie Abweichungen in 
Zeichencodierung und Interpunktion. Besonders formatabhängige Felder wie 
Rechnungsnummern und Beträge reagieren empfindlich auf solche Unterschiede. 

Zur Untersuchung dieses Einflusses werden die in Abschnitt 6.3.3 eingeführten 
Textextraktionsbibliotheken getestet. Die Tests erfolgen mit Gemma 3 27B-IT im 
Zero-Shot-Setup mit standardisiertem Prompt auf denselben 3.000 Rechnungen. 
Die Ergebnisse sind in Tabelle 7.8 dargestellt. 
Bibliothek !"#$%&&	()) *+)-.#10		

()) 
,-./#$		
()) 

*%0#	()) (.+-10		
()) 

pdfplumber 97,32% 93,20% 98,27% 99,37% 94,33% 
pdfminer 97,12% 92,80% 97,47% 98,53% 95,37% 
PyMuPDF 96,99% 92,43% 97,43% 98,90% 94,63% 
pdf_reader (Ruby) 96,63% 92,00% 97,70% 99,33% 93,77% 
pypdfium2 93,05% 89,43% 93,43% 94,73% 90,99% 
Tesseract OCR 95,24% 88,26% 94,36% 98,23% 93,13% 

Tabelle 7.8 Einfluss der Textextraktionsbibliothek auf die Extraktionsgenauigkeit; 
Gemma 3 27B‑IT, 3.000 Rechnungen 

Die Ergebnisse zeigen ein insgesamt hohes Leistungsniveau der parserbasierten 
Lösungen. pdfplumber schneidet dabei in fast allen Kategorien am besten ab. Mit 
97,32% ())*$%)+ und 93,20% ,-)*.#/0	())*$%)+ erzielt es die höchsten Ge-
samtwerte und liegt auch bei Rechnungsnummern (98,27%) sowie Datumsanga-
ben (99,37%) vorne. Lediglich im Feld invoiceAmount erreicht pdfminer mit 

95,37% den besten Einzelwert, während pdfplumber hier 94,33% erzielt. 
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PyMuPDF und pdf_reader (Ruby) liefern vergleichbare Resultate, bleiben aber in 
der ,-)*.#/0	())*$%)+ leicht hinter pdfplumber und pdfminer zurück. Die Er-
gebnisse von pypdfium2 fallen mit 93,05% ())*$%)+ und 89,43% 
,-)*.#/0	())*$%)+ deutlich niedriger aus. Da der Fokus dieser Arbeit auf der 

Evaluation verschiedener LLM-Strategien liegt, wird auf eine vertiefte Analyse der 
bibliotheksspezifischen Unterschiede verzichtet. Tesseract OCR, als rein bildba-
sierte Methode, fällt mit 88,26% ,-)*.#/0	())*$%)+ klar hinter die parserba-

sierten Verfahren zurück. Die Ergebnisse lassen sich insbesondere auf charakte-
ristische OCR-bedingte Fehler, wie die Verwechslung ähnlich aussehender 
Zeichen („0“ und „O“, „1“ und „I“) zurückführen. 

Auf Grundlage der Ergebnisse wird pdfplumber als Standardbibliothek für die wei-
teren Experimente festgelegt, da es die höchsten Genauigkeitswerte erzielt. 

7.3  Einfluss der Ground-Truth-Qualität 

Eine zentrale Erkenntnis der ersten Tests ist, dass die als Ground Truth verwen-
deten Infact-Daten nicht die erwartete Qualität aufweisen. Abweichungen zwi-
schen den LLM-Extraktionen und den Referenzdaten führen zu fälschlicherweise 
negativen Bewertungen der Modellleistung, da die LLMs in einigen Fällen korrekte 
Ergebnisse liefern, während die Referenzdaten geschäftsbedingt modifiziert sind 
oder tatsächliche Fehler enthalten. 

Die Analyse der Abweichungen zeigt vor allem folgende Ursachen: 

- Rechnungsdatum: Anpassungen durch die Kundenbetreuung, um Mah-
nungen zu verzögern (Mahnaufschub). Mangels einer dedizierten Funktion 
wird das Rechnungsdatum manuell nach hinten verschoben. 

- Rechnungsbetrag: In seltenen Fällen angepasste Werte durch Work-
arounds, etwa bei Verrechnungen oder Kulanzregelungen. 

- Rechnungsnummer: Zusätze wie „INK“ zur internen Kennzeichnung von 
Inkassofällen. 

- Menschliche Fehler: Teilweise Übernahme fehlerhafter OCR-Ergeb-
nisse, z. B. Verwechslung von „0“ und „O“ oder fehlende Leerzeichen. 
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Zur Sicherstellung einer fairen Evaluationsbasis werden die betroffenen Datens-
ätze manuell nachkorrigiert. Die Korrektur erfolgt durch Sichtung aller fehlerhaf-
ten Extraktionen und manuelle Nachprüfung über die implementierte Ground-
Truth-Korrekturfunktionalität. Korrekte Ergebnisse werden nicht erneut über-
prüft, sodass ein Restrisiko vereinzelter verbliebener Fehler besteht. Insgesamt 
sind 6% der Dokumente (180 von 3.000), oder 2,13% aller Werte betroffen. Alle 
Anpassungen werden transparent dokumentiert. 

Die Auswirkungen der Korrekturen auf den Developmentdatensatz sind in Tabelle 
7.9 dargestellt. Die !"#$%&&	())*$%)+ steigt durch die Bereinigung von 83,13% 
auf 84,03%, die ,-)*.#/0	())*$%)+ verbessert sich von 56,07% auf 57,87%. 

Besonders deutlich wirkt sich die Bereinigung beim Rechnungsdatum und beim 
Rechnungsbetrag aus, deren ())*$%)+ um knapp einen Prozentpunkt steigt. 
Ohne die Korrekturen lägen die ausgewiesenen Genauigkeiten von Rechnungs-
OCR und LLMs systematisch unter ihrem tatsächlichen Niveau. 
 
Feld vor Korrektur nach Korrektur Veränderung 

J?KL9:	=>> 84,73% 85,70% +0,97% 
M;N9	=>> 82,30% 83,23% +0,93% 

=KO?PN	=>> 82,37% 83,17% +0,80% 
789:;<<	=>> 83,13% 84,03% +0,90% 
MO>?K9PN	=>> 56,07% 57,87% +1,80% 

Tabelle 7.9 Auswirkungen der Ground-Truth-Korrektur auf den Developmentdatensatz 

Zur besseren Nachvollziehbarkeit der Effekte wird in Abbildung 7.9 Einfluss der Kor-

rekturen auf den Ground Truth exemplarisch das im Evaluationssystem implementierte 
Modal gezeigt. Die Visualisierung verdeutlicht, dass sich bereits vergleichsweise 
kleine Anpassungen einzelner Werte auf die Gesamtkennzahlen auswirken kön-
nen. 
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Abbildung 7.9 Einfluss der Korrekturen auf den Ground Truth 

7.4 Optimierung der Extraktionsstrategien 

Die in Abschnitt 7.2 durchgeführten Tests verdeutlichen, dass Extraktionsfehler 
nicht allein aus Modellgrenzen resultieren, sondern maßgeblich von Datenquali-
tät, OCR-Genauigkeit und der Struktur der Rechnungen beeinflusst werden.  

Ein wiederkehrendes Problem betrifft 
die fehlerhafte Betragsinterpretation. 
In manchen Fällen mit Skonto-Anga-
ben wählen die Modelle nicht die ei-
gentliche Gesamtsumme, sondern ei-
nen reduzierten Zwischenbetrag 
(Abbildung 7.10).  

Herausfordernd sind auch Abschlags-
rechnungen, bei denen mehrere Teil-
summen enthalten sind. Hier wählen 
die Modelle häufig eine Zwischen-
summe statt des Endbetrags als  
invoiceAmount (Abbildung 7.11). 

Abbildung 7.10 Skontoangaben 

 Abbildung 7.11 Zwischensummen 
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Auch bei Rechnungsnummern treten regelmäßiger Schwierigkeiten auf. Unein-
heitliche Bezeichnungen wie „Belegnummer“ oder „Beleg“ führen dazu, dass 
Werte aus einem falschen Kontextfeld übernommen werden (Abbildung 7.12).  

Datumsprobleme stellen eine weitere Fehlerquelle dar. Rechnungen enthalten 
Datumsangaben in unterschiedlichen Formaten, etwa im US-Format 
(MM/DD/YYYY, Abbildung 7.12), im EU-Format (DD.MM.YYYY) oder im ISO-For-
mat (YYYY-MM-DD). Zudem sind die Felder nicht immer eindeutig benannt. 
Manche Dokumente verwenden sowohl „Rechnungsdatum“ als auch „Leistungs-
datum“, was zu Fehlinterpretationen führt. Hinzu kommen Tippfehler, bei denen 
Datumsangaben inhaltlich fehlerhaft eingetragen sind, etwa „14.20.2023“ statt 
„14.02.2023“ (Abbildung 7.14). 

Fehlerhafte Einbettungen stellen eine weitere Quelle für Extraktionsfehler dar. 
Ein Beispiel zeigt den Unterschied zwischen sichtbarer Darstellung und tatsäch-
lich im PDF hinterlegtem Text. Während das Rechnungsdokument das Datum 
korrekt als 14.03.2024 ausweist, ist im eingebetteten Text fälschlich 13.09.2023 
hinterlegt. Solche Abweichungen entstehen durch fehlerhafte PDF-Generierung 
und beeinträchtigen die Qualität der Extraktion erheblich (Abbildung 7.15).  

 

 

 
  

Abbildung 7.12 verschiedene Nummern 

Abbildung 7.14 Typo im Datum 
Abbildung 7.14 Amerikanisches Datumsformat 

Abbildung 7.15 fehlerhafte Einbettung 
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Neben solchen Fehlern in generierten PDFs treten auch bei OCR-basierten Text-
layern Probleme auf. Typisch sind Verwechslungen ähnlich aussehender Zei-
chen („0“ und „O“, „1“ und „I“) oder fehlerhafte Segmentierungen. Hinzu kom-
men fehlerhafte Text-Embeddings, bei denen semantisch ähnliche Begriffe 
falsch zugeordnet werden (Abbildung 7.16).  

 

 

 

Diese Beispiele zeigen, dass Unschärfen und Mehrdeutigkeiten in Rechnungsdo-
kumenten zu fehlerhaften Ergebnissen führen können, sowohl bei LLMs als 
auch bei manuellen Bearbeitungen. Wie bereits in Abschnitt 7.3 dargestellt, sind 
auch menschliche Korrekturen fehleranfällig. Die im Folgenden untersuchten 
Optimierungsstrategien (Zero-Shot und Few-Shot) basieren auf den in Abschnitt 
4.3.3 eingeführten Konzepten und werden unter den in Abschnitt 5.6 beschrie-
benen Evaluationsbedingungen getestet. Ziel ist es, typische Problemklassen 
gezielt zu adressieren und die Extraktion insgesamt robuster gegenüber Unsi-
cherheiten zu machen. 

7.4.1  Zero-Shot-Optimierung 

Die Zero-Shot-Optimierung bildet eine wesentliche Grundlage, um die Rech-
nungsdatenextraktion ohne Beispielinputs zu verbessern und eine stabile Baseline 
für nachgelagerte Verfahren festzulegen. Ziel ist es herauszufinden, wie sich ver-
schiedene Prompt-Strategien auf die Ergebnisqualität auswirken und welche Va-
riante den zuverlässigsten Ausgangspunkt für weitere Tests liefert. 

Es werden drei Ansätze getestet, die sich an den in eingeführten Prompting-Stra-
tegien orientieren. Der erste ist ein restriktiver Prompt mit klaren Format- und 
Validierungsvorgaben („restriktiv“). Der zweite ist ein bewusst minimalistischer 
Prompt mit nur den nötigsten Instruktionen („einfach“). Der dritte ist ein struk-
turierter Chain-of-Thought-Ansatz (CoT), der das Modell schrittweise durch die 
Extraktion führt. 
  

Abbildung 7.16 fehlerhafte OCR-Einbettung 
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Die restriktive Variante integriert Instruktionen und Validierungsregeln, um diese 
Fehlertypen zu adressieren, etwa Verwechslungen von Belegnummern und Rech-
nungsnummern, uneinheitliche Datumsformate oder die Extraktion von Zwi-
schensummen als Gesamtbetrag (Abbildung 7.17). Der einfache Ansatz testet 
dagegen stärker das impliziten des Modells. Er reduziert die Anweisungen be-
wusst auf ein Minimum und prüft, ob die Modelle auch ohne detaillierte Vorgaben 
korrekte Ergebnisse liefern, solange eine minimale Struktur für die JSON-Ausgabe 
vorgegeben ist (Abbildung 7.18). Diese Variante ist zugleich relevant für die Null-
hypothese H02, nach der zusätzliche Instruktion im Prompt keine signifikanten 
Verbesserungen der Extraktionsleistung bewirken. Der CoT-Ansatz hingegen 
führt das Modell explizit schrittweise durch den Extraktionsprozess und soll 
dadurch die Genauigkeit der Ergebnisse erhöhen (Abbildung 7.19).  

 
You extract invoice information from German invoices into JSON with strict type valida-
tion.  
Return only raw JSON without formatting or explanations. invoiceAmount is gross/brutto and  
always in EUR — also possible: Offene Forderung —  
never netto unless explicitly exempt from VAT — prefer Rechnung or Rechnungsnummer, but  
Belegnummer is a valid fallback. Dates use ISO format (YYYY-MM-DD). Use null for missing  
fields. Strings must be strings, Doubles must be numbers with decimal points, Integers  
must be whole numbers. — If you are unconfident, also return the alternative results. 
  

Abbildung 7.17 Restriktiver Prompt mit Validierungsregeln 

 
Extrahiere Folgende Rechnungsfelder in folgender JSON-Struktur:  
{ "invoiceNumber": "String", "invoiceDate": "Date", "invoiceAmount": "Double"}  
  
Hier der Text: $text 
  

Abbildung 7.18 einfacher Ansatz 

 
You are an expert system for extracting invoice information from text. 
  
Think step by step before giving the final answer: 
1. Identify all candidate values for each field. 
2. Check each candidate against the required data types and formats: 
   - invoiceNumber: Use the exact extracted value without any changes, shortening,  
     or normalization. Keep all prefixes (e.g., 'RE-', 'INV-'), hyphens, and  
     special characters exactly as they appear in the text. 
   - invoiceDate: Convert all dates to ISO format (YYYY-MM-DD). If a date is in  
     MM/DD/YYYY (US format), convert it to ISO. 
   - invoiceAmount: Numeric (Double), use a dot (.) as the decimal separator,  
     no thousands separator. Convert "1.200,50" → "1200.50". 
3. Determine the most plausible invoiceAmount: [...] 
  

Abbildung 7.19 Chain-of-Thought-Prompt 
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Die Ergebnisse zeigen deutliche Unterschiede zwischen den Strategien (Abbil-
dung 7.21 Ergebnisübersicht der Zero-Shot-Optimierungsstrategien GPT-4.1 (vollständige Ta-
belle im Anhang 3.4) 

Abbildung 7.22 - Abbildung 7.22). Bei GPT-4.1 liefert der einfache Prompt, der stär-
ker auf implizites Vorwissen, bessere Resultate als die restriktive Variante, was 
darauf hinweist, dass zu detaillierte Vorgaben das natürliche Reasoning dieses 
Modells einschränken können. Bei Claude 3 Sonnet liegt der restriktive Ansatz 
hingegen vor dem einfachen. Bei Gemma 3 27B fallen die Unterschiede insgesamt 
geringer aus, was darauf hindeutet, dass mittelgroße Modelle stärker von klaren 
Strukturen profitieren. Gleichzeitig erreichen alle drei Modelle mit dem CoT-An-

satz die besten Ergebnisse. Am stärksten profitiert dabei Claude 3 Sonnet, dass 
insgesamt die höchsten Genauigkeitswerte erzielt. 

Abbildung 7.20 Ergebnisübersicht der Zero-Shot-Optimierungsstrategien Claude Sonnet (vollstän-
dige Tabelle im Anhang 3.4) 
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Abbildung 7.21 Ergebnisübersicht der Zero-Shot-Optimierungsstrategien GPT-4.1 (vollständige 
Tabelle im Anhang 3.4) 

Abbildung 7.22 Ergebnisübersicht der Zero-Shot-Optimierungsstrategien Gemma 3 27B (vollstän-
dige Tabelle im Anhang 3.4) 

7.4.2  Few-Shot-Optimierung 

Die Few-Shot-Optimierung ergänzt die Zero-Shot-Strategien und verfolgt einen 
alternativen Ansatz zur Verbesserung der Extraktionsqualität. Im Unterschied zu 
rein instruktionalen Prompts steht hier die Nutzung konkreter Beispiele im Vor-
dergrund, die typische Fehlermuster adressieren. Die Beispiele basieren auf mar-
kanten Fehlern aus der Baseline-Evaluierung, sodass gezielt Problemfälle für je-
des Extraktionsfeld abgedeckt werden. 

Die Strategie wird in zwei Varianten umgesetzt. Der klassische Ansatz verwendet 
vier synthetisierte Beispiele, die reale Extraktionsfehler nachbilden. Dazu gehören 
Forderungsabrechnungen mit Eigenanteil, Teilrechnungen mit Anzahlungen so-
wie Rechnungen mit paralleler Nutzung von Belegnummer und Rechnungsnum-
mer. Ein Auszug aus diesem Few-Shot-Classic-Prompt ist in Abbildung 7.23 darge-
stellt. Dieser Ansatz verzichtet bewusst auf zusätzliche Reasoning-Schritte und 
setzt ausschließlich auf die direkte Demonstration der korrekten Extraktionslogik. 
Der zweite Ansatz kombiniert diese Beispiele mit dem erfolgreichen Chain-of-
Thought-Systemprompt (Abbildung 7.19) aus der Zero-Shot-Optimierung, um 
beide Verfahren zu vereinen. 
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Example 1: Forderungsabrechnung mit Eigenanteil 
RECHNUNG Nr.: R24-5923, Datum: 30.12.2024 
Summe 166,80 Eigenanteil 26,68 Forderung 140,12 
→ {"invoiceNumber": "R24-5923", "invoiceDate": "2024-12-30", "invoiceAmount": 140.12} 
  
Example 4: Teilrechnung mit Anzahlung 
TEILRECHNUNG Rechnungsnummer: RE2021-20329, Datum: 23.04.2021 
Treppenlift FLOW X 9.159,66 EUR zzgl. 1.740,33 EUR MwSt = Gesamt 10.900,00 EUR 
Anzahlung 30% 2.747,90 EUR zzgl. 19% MwSt 522,10 EUR 
Anzahlungsbetrag 3.270,00 EUR 
Restbetrag 7.630,00 EUR wird später berechnet. 
→ {"invoiceNumber": "RE2021-20329", "invoiceDate": "2021-04-23", "invoiceAmount": 3270.0} 
  

Abbildung 7.23 Ausschnitt Few Shot Prompt 

Die Ergebnisse in Abbildung 7.24 verdeutlichen modellspezifische Unterschiede 
zwischen den Strategien. Claude 3 Sonnet profitiert am stärksten von der Kom-
bination mit CoT und erzielt die insgesamt höchsten Genauigkeitswerte. Bei GPT-
4.1 liegen der klassische und der kombinierte Ansatz nahezu gleichauf, was da-
rauf hindeutet, dass zusätzliche Reasoning-Anweisungen hier keinen klaren Vor-
teil bringen. Bei Gemma 3 27B zeigt sich ein gegenteiliger Effekt. Der klassische 
Ansatz liefert leicht bessere Ergebnisse als die kombinierte Variante. Dies unter-
streicht, dass der Nutzen kombinierter Strategien stark vom verwendeten Modell 
abhängt. 

 
Abbildung 7.24 Ergebnisübersicht der Few-Shot-Optimierungsstrategien (Vollständige Tabelle im 
Anhang 3.5) 
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7.5 Evaluationslauf 

Die finale Evaluationsphase wird auf dem in Abschnitt 7.1.3 beschriebenen Eva-
luationsdatensatz durchgeführt, der sich in Zusammensetzung und Komplexität 
von dem für die Entwicklungs- und Optimierungsphase genutzten Datensatz un-
terscheidet. Ziel ist es, die in Abschnitt 7.4 definierten Strategien unter identi-
schen, reproduzierbaren Rahmenbedingungen gegeneinander und gegen die be-
stehende OCR-Lösung zu testen, um deren Leistungsfähigkeit in einem 
realitätsnahen Szenario belastbar zu bewerten. 

Für den Evaluationslauf werden fünf Strategien ausgewählt. Dazu gehören das 
Zero-Shot-Prompt mit CoT, der klassische Few-Shot-Prompt mit Beispielen typi-
scher Fehlerszenarien, der kombinierte Few-Shot-CoT-Ansatz, das in Abschnitt 
7.2.1 definierte Baseline-Prompt sowie der einfache Prompt zur Prüfung der Null-
hypothese H02. Diese Strategien repräsentieren die wesentlichen in der Optimie-
rungsphase untersuchten Varianten und decken sowohl minimale Instruktions-
szenarien als auch komplexe Reasoning-Ansätze ab. 

Alle Evaluationsdurchläufe werden mit den empirisch bestimmten Idealparame-
tern ausgeführt, um die Vergleichbarkeit sicherzustellen. Dabei kommen die fol-
genden Einstellungen zur Anwendung:  
Modell 0#.2#$%0-$# 0+2_2 .%4_0+5#16 6##I 
Claude 3 Sonnet 
(20250219) 

0 1 200 – 

GPT-4.1 0 1 200 3333 
Gemma 3 27B-IT 1 1 200 3333 

Tabelle 7.10 Parameterkonfigurationen für den Evaluationslauf 

Wie in Abschnitt 7.3 erläutert, weisen die Infact-Referenzdaten systematische 
Abweichungen auf, die andernfalls zu verzerrten Ergebnissen führen würden. 
Deshalb werden im Rahmen der Evaluationsphase auch die Referenzdaten des 
Evaluationsdatensatzes manuell nachkorrigiert. Auf diese Weise wird eine faire 
und konsistente Vergleichsbasis geschaffen. Die resultierenden Veränderungen 
in den Metriken sind in Tabelle 7.11 dargestellt. 
Feld vor Korrektur nach Korrektur Veränderung 
J?KL9:	=>> 96,92% 96,72% -0,20% 
M;N9	=>> 96,30% 96,51% -0,11% 

=KO?PN	=>> 82,37% 83,17% +0,21% 
789:;<<	=>> 83,13% 84,03% -0,04% 
MO>?K9PN	=>> 56,07% 57,87% -0,14% 

Tabelle 7.11 Auswirkungen der Ground-Truth-Korrektur auf den Evaluationsdatensatz 
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Durch die Festlegung einheitlicher Parameter (Tabelle 7.10) und die konsequente 
manuelle Nachprüfung potenziell fehlerhafter Ergebnisse wird sichergestellt, dass 
alle Strategien unter exakt vergleichbaren Bedingungen getestet werden können. 
So lassen sich Unterschiede in den Resultaten eindeutig auf Modell- und 
Prompting-Strategie-Effekte zurückführen, ohne dass Verzerrungen durch zufäl-
lige Sampling-Effekte, fehlerhafte Ground-Truth-Daten oder variierende Textex-
traktionen entstehen. Diese Vorgehensweise bildet die methodische Grundlage 
für die im folgenden Kapitel dargestellte Ergebnisanalyse. 
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8 Ergebnisse 

Die finale Evaluation erfolgt auf Basis des in Abschnitt 7.5 beschriebenen Setups 
und überprüft die Leistungsfähigkeit der entwickelten Strategien auf dem unab-
hängigen Evaluationsdatensatz. Im Mittelpunkt steht die Gesamtleistung der Mo-
delle, ergänzt durch eine vertiefte Betrachtung typischer Fehlermuster und ihrer 
Ursachen. Darüber hinaus werden die aufgestellten Hypothesen überprüft, die 
Resultate mit der bisherigen OCR-Lösung verglichen und Laufzeit- sowie Token-
aspekte ausgewertet. Abschließend werden die Grenzen des rein textbasierten 
Ansatzes diskutiert. 

8.1  Gesamtergebnisse 

Die Ergebnisse der finalen Evaluation sind in Abbildung 8.1 dargestellt. Der Über-
blick verdeutlicht, dass sich die LLM-basierten Ansätze in allen Strategien klar von 
der bisherigen OCR-Lösung absetzen. Während Gini mit einer 
,-)*.#/0	())*$%)+ von 87,24% deutlich zurückliegt, erreichen selbst die 
schwächeren Strategien der LLMs noch Werte oberhalb von 94%. Besonders 
deutlich wird, dass die optimierten Few-Shot- und Few-Shot-CoT-Strategien bei 
allen drei Modellen die höchsten Werte erzielen. Claude 3 Sonnet liefert hier mit 
99,36% ,-)*.#/0	())*$%)+ nahezu fehlerfreie Extraktionen, dicht gefolgt von 

Abbildung 8.1 Vergleich der !"#$%&'(	*##$+,#- aller Modelle nach Strategien (vollstän-
dige Tabelle im Anhang 3.6) 
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GPT-4.1 mit 99,02% im Few-Shot-Setup. Gemma 3 27B-IT bleibt mit 97,61% 
etwas darunter, liegt aber ebenfalls klar über der Baseline. 

Die Abbildung macht zudem deutlich, dass die Strategien mit Beispiel-basierten 
Prompts durchweg überlegen sind, während einfache oder Baseline-Prompts nur 
im Mittelfeld liegen. Auffällig ist, dass GPT-4.1 in der einfachen Variante überra-
schend stark abschneidet und kaum hinter die optimierten Ansätze zurückfällt, 
während Claude 3 Sonnet und Gemma 3 27B deutlicher von zusätzlichen Beispie-
len und Reasoning-Schritten profitieren. 

Eine genauere Betrachtung der feldspezifischen Ergebnisse findet sich in Abbil-
dung 8.2. Hier wird sichtbar, dass die Spitzenwerte nicht auf einzelne Felder be-
schränkt sind, sondern über alle Felder hinweg konsistent auftreten. Claude 3 
Sonnet erreicht in allen optimierten Strategien über 99% ,-)*.#/0	())*$%)+ 

und weist mit lediglich 0,25 Prozentpunkten zwischen der besten und der schlech-
testen Variante eine sehr geringe Spannweite auf. GPT-4.1 bewegt sich in der 
Few-Shot-Variante auf einem ähnlich hohen Niveau, während Gemma 3 27B mit 
97,61% ,-)*.#/0	())*$%)+ zwar sehr gute, aber im Vergleich etwas niedrigere 
Werte erzielt. 

 
Abbildung 8.2 Detailanalyse der Evaluationsergebnisse der besten Strategie je Model (vollständige 
Tabelle im Anhang 3.6) 
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Im direkten Vergleich mit der OCR-Lösung wird der Vorteil der LLM-Ansätze be-
sonders deutlich. Während Gini gerade bei Datums- und Betragsfeldern wieder-
holt Fehler produziert, überschreiten die LLMs hier durchweg die 98-Prozent-
Marke. Die Detailanalyse bestätigt damit, dass die Überlegenheit der LLM-basier-
ten Verfahren nicht nur in den aggregierten Kennzahlen sichtbar ist, sondern 
auch in sämtlichen Einzelfeldern konsistent nachgewiesen werden kann.  

8.2 Fehlermuster der eingebetteten Texte 

Die Analyse der Fehlfälle zeigt, dass die Hauptursache für verbleibende Fehler 
nicht in den Modellen selbst liegt, sondern in der Qualität der im PDF eingebet-
teten Texte (Textlayer). Dieser Textlayer wird nicht von der Evaluationsplattform 
selbst erzeugt, sondern stammt von Systemen Dritter, die entweder nativ Text in 
die PDF-Datei einbetten oder eine vorgeschaltete OCR-Erkennung auf bildbasier-
ten PDFs durchführen und deren Ergebnisse einbetten. In beiden Fällen ist die 
Extraktion vollständig von der Korrektheit und Konsistenz dieser extern bereitge-
stellten Zeicheninformationen abhängig.  

Bei der besten getesteten Strategie (Claude 3 Sonnet Few-Shot CoT) konnten 
478 von 508 Kreditoren, also unterschiedliche Layouts, vollständig fehlerfrei ver-
arbeitet werden. Tabelle 8.1 zeigt die Verteilung der Fehlerraten über alle Stra-
tegien, einschließlich des bisherigen Gini-Systems. Es wird sichtbar, dass die LLM-
basierten Ansätze (Claude, GPT, Gemma) insgesamt eine deutlich höhere Genau-
igkeit erreichen, während Gini bei einem größeren Anteil der Kreditoren fehler-
hafte Extraktionen liefert. Die verbleibenden Fehler lassen sich überwiegend auf 
inkonsistente OCR- oder Textlayer-Einbettungen zurückführen. 

 
Strategie\Fehler je Kreditor = 0% > 0% < 70% > 70% 
Claude Few-Shot CoT 478 19 11 
GPT Few-Shot 472 27 9 
Gemma Few-Shot 460 37 11 
Gini 350 95 63 

Tabelle 8.1 Anteil fehlerhafter Dokumente je Kreditoren und Strategie 
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Die Analyse der Textlayer verdeutlicht verschiedene Fehlermuster, die sich in fol-
gende Kategorien gliedern lassen: 
 
Fehlerhafte oder abweichende Werte im Textlayer 
In einigen Fällen werden ähnliche Zeichen fehlerhaft erkannt und falsch einge-
bettet. Häufig betrifft dies die Verwechslung von Ziffern und Buchstaben wie „0“ 
und „O“ oder „1“ und „I“. Solche Fehler können auch bei  
Datumsangaben auftreten, wenn Zeichen ausgelassen oder mit anderen Frag-
menten vermischt werden (Abbildung 8.3). 

 
Teilweise unterscheidet sich der eingebettete Wert deutlich vom tatsächlich 
sichtbaren Text. Ein Beispiel ist die fehlerhafte Zusammenführung von Ziffern 
durch fehlende Trennzeichen (Abbildung 8.4). Solche Abweichungen verändern 
die Bedeutung der extrahierten Information und können insbesondere bei Be-
trägen oder Nummernfeldern zu Fehlklassifikationen führen. 

 
Phantomtexte 
 In einigen Fällen enthält der Textlayer Werte, die im Dokument visuell nicht vor-
handen sind (Abbildung 8.5). Diese konkurrieren mit den tatsächlich sichtbaren 
Zahlen und erschweren die 
korrekte Auswahl durch das 
Modell, da konkurrierende 
Kandidatenwerte entstehen, 
die nicht plausibel verifizier-
bar sind. 
 
  

Abbildung 8.3 sichtbares „254/24“ versus eingebettetes „254124 

Abbildung 8.4 sichtbares Datum „30.07.2024“ ver-
sus eingebettetes Fragment „…m 26. Juli 20… 

Abbildung 8.5 Phantomtexte 
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Fehlende semantische Marker 
Auch bei identischen Layouts treten unterschiedliche Extraktionsergebnisse auf. 
In Abbildung 8.9 und Abbildung 8.7 wird die Kundennummer als Rechnungs-
nummer interpretiert, während in Abbildung 8.8 und Abbildung 8.6 die Beleg-
nummer erkannt wird. Auffällig ist, dass in beiden Fällen die eingebetteten 
Texte keine Feldbezeichnungen enthalten, wodurch die Modelle auf schwächere 
Kontextsignale angewiesen sind. 
 

 
Diese Ergebnisse verdeutlichen, dass große Sprachmodelle eine leistungsfähige 
Möglichkeit für das Postprocessing von Rechnungsdaten darstellen. Gleichzeitig 
zeigen sie, wie stark die erzielte Genauigkeit von der Qualität des Preproces-
sings abhängt und damit auch von der Verlässlichkeit der eingebetteten Texte. 
Die ausschließliche Nutzung solcher Textlayer bietet bei korrekt erzeugten oder 
nativ generierten Dokumenten eine sehr hohe Extraktionsqualität, bringt jedoch 
auch Risiken mit sich. Fehlerhafte OCR-Ergebnisse, fragmentierte Einbettungen 
oder sogar absichtlich manipulierte Textlayer können nicht zuverlässig erkannt 
oder validiert werden. Dadurch entsteht eine Abhängigkeit von Drittanbietern, 
deren Textbereitstellung nicht immer überprüfbar ist. 
  

Abbildung 8.9 Sichtbarer Rechnungsblock mit vollständigen Feldbezeichnungen (Rechnung A) 

Abbildung 8.7 Eingebetteter Textlayer ohne Feld-
bezeichnungen zu Abbildung 8.9 

Abbildung 8.8 Sichtbarer Rechnungsblock mit identischem Layout (Rechnung B) 

Abbildung 8.6 Eingebetteter Textlayer ohne 
Feldbezeichnungen zu Abbildung 8.8 
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8.3  Evaluation der Hypothesen und Vergleich zur 
Baseline 

Die finale Evaluation der getesteten Modellstrategien erfolgt auf einem unabhän-
gigen Testdatensatz mit 508 verschiedenen Kreditoren und erheblicher Layout-
Varianz. Bewertet wird die Extraktionsqualität anhand der vollständigen Korrekt-
heit der drei Felder invoiceNumber, invoiceDate und invoiceAmount. Die Ergeb-
nisse dienen zur Überprüfung der in Abschnitt 2.3 formulierten Hypothesenpaare 
H01 bis H03. Neben der Auswertung beschreibender Kennzahlen wird die statisti-
sche Signifikanz mittels dokumentbasierter McNemar-Tests nach Abschnitt 5.3.4 
überprüft. 

8.3.1  H01 Layout-Robustheit 

Die getesteten LLM-Strategien erzielen bei der im Evaluationsdatensatz vorhan-
denen Layout-Varianz, bedingt durch 508 verschiedene Kreditoren, signifikant 
bessere Ergebnisse als die bestehende OCR-basierte Lösung der Gini GmbH. 
Während Gini nur eine ,-)*.#/0	())*$%)+ von rund 87% erreicht, liegen die 
LLM-basierten Verfahren deutlich höher. Abbildung 8.10 Ergebnisse des McNemar-Tests 

für Claude 3 Sonnet (Few-Shot-CoT) vs. Gini (n = 10.000) illustriert am Beispiel von Claude 
3 Sonnet, dass die Leistungsunterschiede nicht zufällig sind. In 1.247 Fällen liefert 
Claude korrekte Ergebnisse, bei denen Gini fehlschlägt, während die umgekehrte 
Konstellation nur 35 Mal auftritt.  

Der McNemar-Test weist für diesen Vergleich ein Odds Ratio von 35,6 mit einem 
95%-Konfidenzintervall von 25,5 bis 49,9 aus. Dies verdeutlicht eine mehr als 35-
fache Überlegenheit von Claude gegenüber Gini bei der Extraktion. 

Abbildung 8.10 Ergebnisse des McNemar-Tests für Claude 3 Sonnet (Few-Shot-CoT) vs. Gini 
(n = 10.000) 
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Auch die übrigen Strategien zeigen in der statistischen Auswertung klare Vorteile. 
Tabelle 8.2 fasst die zentralen Ergebnisse zusammen. GPT-4.1 Few-Shot liegt auf 
einem ähnlich hohen Niveau wie Claude, während Gemma 3 27B mit Few-Shot 
zwar ebenfalls signifikant besser als Gini abschneidet, im Vergleich aber etwas 
schwächer bleibt. Die McNemar-Tests ergeben in allen Fällen hochsignifikante 
Unterschiede, die auch nach Holm-Korrektur bestehen bleiben. Damit kann die 
Nullhypothese H01, wonach LLMs bei hoher Layout-Varianz keine signifikant bes-
seren Ergebnisse als klassische OCR liefern, zurückgewiesen werden. Stattdessen 
bestätigt sich die Alternativhypothese HA1, dass LLMs bei starker Layout-Diversi-
tät signifikant bessere Ergebnisse erzielen. Für die Gini-Baseline sind keine OR-, 
χ²- oder p-Werte angegeben, da sie als Referenzwert dient. 

Strategie !"#$%&&		
())-$%)B 

(%) 

*+)-.#10		
())-$%)B (%) 

(95%-CI) 

McNemar OR 
(95%-CI) 

χ2-Wert p-Wert 
(Holm-
adj.) 

Gini (Baseline) 95,53 87,24  
(86,57 – 87,88) 

– – – 

Claude Few-
Shot CoT 

99,76 99,36  
(99,18 – 99,5) 

35,63  
(25,46 – 49,85) 

1143,93 < 0,01 

GPT Few-Shot 99,64 99,02  
(98,81 – 99,2) 

20,0  
(15,5 – 25,81) 

1064,00 < 0,01 

Gemma 3 27B 
Few-Shot 

99,13 97,61  
(97,29 – 97,89) 

9,56  
(7,93 – 11,53) 

838,20 < 0,01 

Tabelle 8.2 Gesamtergebnisse aller Strategien im Vergleich zur Gini-Baseline 

8.3.2  H02 Optimierung durch Prompt-Engineering  

Die getesteten Promptstrategien zeigen im Vergleich zu einfachen Prompts ein 
uneinheitliches Bild. Während Claude 3 Sonnet und Gemma 3 27B von der zu-
sätzlichen Strukturierung klar profitieren, fällt das Ergebnis bei GPT-4.1 differen-
zierter aus. Abbildung 8.11 verdeutlicht dies anhand der ,-)*.#/0	())*$%)+ im 
direkten Vergleich zwischen dem einfachen Prompt und jeweils der besten sowie 
der schlechtesten optimierten Strategie. Claude 3 Sonnet erreicht mit Few-Shot-
CoT fast vier Prozentpunkte mehr als der Simple Prompt, auch Zero-Shot-CoT 
führt zu einer deutlichen Verbesserung. Bei Gemma 3 27B sind die Unterschiede 
kleiner, aber dennoch durchgehend signifikant. GPT-4.1 hingegen erzielt bereits 
mit dem Simple Prompt ein sehr hohes Leistungsniveau, das durch Few-Shot 
leicht gesteigert wird, während Zero-Shot-CoT eine signifikante Verschlechterung 
führt, wie Tabelle 8.3 anhand eines Odds Ratios von 0,33 zeigt. 



99 
 

Die McNemar-Tests machen die Unterschiede klar messbar. Bei Claude 3 Son-
net treten strukturierte Strategien in mehr als dreißigmal so vielen Fällen kor-
rekt auf wie die einfache Variante umgekehrt. Bei Gemma 3 27B zeigt Few-Shot 
eine signifikante Verbesserung im Bereich des Vier- bis Fünffachen gegenüber 
dem Simple Prompt. Die Few-Shot-Strategie ist rund neunmal häufiger erfolg-
reich als der Simple Prompt, Zero-Shot-CoT hingegen bleibt deutlich unterlegen. 

Tabelle 8.3 fasst die Ergebnisse zusammen und, dass die Hypothese H02 nicht 
für alle Modelle einheitlich bewertet werden kann. Claude 3 Sonnet und Gemma 
3 27B die Hypothese klar widerlegen, gilt sie für GPT-4.1 zumindest teilweise. 
Die Ergebnisse verdeutlichen, dass die Wirkung von Prompt-Engineering stark 
vom verwendeten Modell abhängt. Eine allgemeine Aussage über alle Systeme 
hinweg ist daher nicht möglich, vielmehr sollte die Wahl einer Strategie stets im 
Kontext des eingesetzten Modells getroffen werden. 

  

Abbildung 8.11 Vergleich der MO>?K9PN	=>>?:;>@ zwischen Simple-Prompts und optimierten 
Strategien je Modell 



100 
 

Modell Strategie *+)-.#10		
())-$%)B (%) 

(95%-CI) 

McNemar OR 
(95%-CI) 

χ2-Wert p-Wert 
(Holm-adj.) 

Claude 3 
Sonnet 
 

Simple 95,97 
(95,57 – 96,34) 

– – – 

Few-Shot-CoT  99,36 
(99,18 – 99,5)  

31,82 
(17,46 – 57,99) 

318,34 < 0,01 

Zero-Shot-CoT 99,11 
(98,91 – 99,28) 

15,27 
(9,92 – 23,51) 

375,41 < 0,01 

GPT-4.1 Simple 98,46 
(98,2 – 98,68) 

– – – 

Few-Shot 99,02  
(98,81 – 99,2) 

9  
(4,12 – 19,65) 

44,8 < 0,01 

Zero-Shot-CoT 97,42 
(97,09 – 97,71) 

0,33 
(0,24 – 0,46) 

52 < 0,01 

Gemma 3 
27B 

Simple 94,28 
(93,81 – 94,72) 

– – – 

Few-Shot  97,61 
(97,29 – 97,89) 

4,36  
(3,51 – 5,43) 

208,83 < 0,01 

Few-Shot-CoT  95,96 
(95,56 – 96,33) 

1,61 
(1,38 – 1,87) 

39,20 < 0,01 

Tabelle 8.3 Vergleich zwischen einfacher („Simple“) und alternativer Strategie pro Modell 
(MO>?K9PN	=>>?:;>@ und McNemar-Test) (n = 10.000)  
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8.3.3  H03 Generalisierbarkeit auf unabhängige Daten  

Die Generalisierbarkeit der getesteten Strategien wird überprüft, indem die Er-
gebnisse auf einem unabhängigen Evaluationsdatensatz den Resultaten aus der 
Optimierungsphase gegenübergestellt werden. Hypothese H03 nimmt an, dass 
LLMs auf unabhängigen Daten eine signifikant schlechtere Leistung zeigen als bei 
den in der Optimierungsphase genutzten Entwicklungsdaten. Der Evaluationsda-
tensatz umfasst dabei eine eigenständige Stichprobe von Rechnungen mit ver-
gleichbarer Layout-Diversität, die nicht in die Optimierung eingeflossen ist (Ab-
bildung 8.4). 

Die Analyse konzentriert sich auf die jeweils besten Strategien der getesteten 
Modelle. Im Vergleich zeigt sich ein stabiles Leistungsbild ohne signifikante Ein-
bußen. Claude 3 Sonnet und GPT-4.1 erreichen nahezu identische Ergebnisse in 
beiden Datensätzen, während Gemma 3 27B im Evaluationsdatensatz sogar eine 
leichte Verbesserung erzielt. Alle Abweichungen bewegen sich innerhalb der er-
wartbaren Schwankungsbreite der Wilson-Konfidenzintervalle und sind statistisch 
nicht signifikant. Dieses Ergebnis lässt sich durch die unterschiedliche Zusam-
mensetzung der Datensätze erklären. Während der Developmentdatensatz ge-
zielt komplexere Fälle enthielt, um Optimierungspotenziale sichtbar zu machen, 
bildet der Evaluationsdatensatz eine breiter angelegte und repräsentative Stich-
probe ab. Ein direkter Leistungsvergleich ist daher nur eingeschränkt sinnvoll, da 
tendenziell höhere Genauigkeiten zu erwarten sind. Entscheidend ist, dass die 
Strategien trotz fehlender Optimierung stabil und teilweise sogar besser ab-
schneiden. Dies belegt eine robuste Generalisierbarkeit und zeigt keine Hinweise 
auf Overfitting. 
 
Modell / Strategie Developmentdatensatz % 

(95%-CI) 
Evaluationsdatensatz % 

(95%-CI) 
Claude 3 Sonnet (Few-Shot-
CoT) 

99,20 (98,81 – 99,46) 99,36 (99,18 – 99,50) 

GPT-4.1 (Few-Shot) 99,00 (98,58 – 99,30) 99,02 (98,81 – 99,20) 
Gemma 3 27B (Few-Shot) 95,73 (94,95 – 96,40) 97,61 (97,29 – 97,89) 

Tabelle 8.4 Vergleich der Modellleistung auf Developmentdatensatz und Evaluationsdatensatz 
(MO>?K9PN	=>>?:;>@) 
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Die Ergebnisse widersprechen der Annahme, dass LLMs auf unabhängigen Daten 
systematisch schlechtere Leistungen erzielen. Stattdessen bestätigen sie eine 
konsistente Extraktionsqualität über verschiedene Dokumentmengen hinweg. Die 
Nullhypothese H03 wird zurückgewiesen und die Alternativhypothese HA3 bestä-
tigt. 

8.4 Token und Laufzeit 

Neben der reinen Extraktionsqualität wurde auch die technische Performanz der 
Strategien in Form von Tokenverbrauch und Laufzeiten untersucht. Diese Kenn-
zahlen sind nicht primärer Bestandteil der Evaluation, verdeutlichen jedoch pra-
xisrelevante Unterschiede zwischen den Modellen. 

Die in Tabelle 8.5 dargestellten Ergebnisse beziehen sich auf die im Rahmen der 
Untersuchung eingesetzten Strategien, die ausschließlich die Felder Rechnungs-
nummer, Datum und Betrag extrahieren. Die Werte zeigen, dass Strategien mit 
komplexeren Prompts im Durchschnitt mehr Tokens pro Anfrage benötigen und 
damit auch längere Antwortzeiten aufweisen. So liegt die durchschnittliche Ver-
arbeitungsdauer bei Claude 3 Sonnet mit Few-Shot-CoT bei rund 1,4 Sekunden, 
während GPT-4.1 mit vergleichbarer Strategie unter einer Sekunde bleibt. Bei 
Gemma 3 27B bewegen sich die Laufzeiten mit 1,6 bis 1,8 Sekunden auf einem 
höheren Niveau, was sowohl auf die Modellgröße als auch auf die promptbedingte 
Tokenzahl zurückzuführen ist. 

Tabelle 8.5 Token- und Laufzeitstatistiken der untersuchten Strategien 

 

Modell / Stra-
tegie 

Avg Tokens 
(± σ) 

Avg Prompt 
Tokens (± σ) 

Avg Completion 
Tokens (± σ) 

Avg Dauer ms 
(± σ) 

Claude 3 Sonnet 
CoT 

1454 ± 533 1410 ± 533 45 ± 2 1459 ± 528 

Claude 3 Sonnet 
Few-Shot-CoT 

2083 ± 533 2046 ± 533 37 ± 2 1387 ± 349 

GPT-4.1 CoT 1132 ± 405 1097 ± 405 36 ± 2 951 ± 746 
GPT-4.1 Few-
Shot 

1368 ± 406 1338 ± 405 31 ± 2 975 ± 672 

Gemma 3 27B 
CoT 

1341 ± 531 1287 ± 530 55 ± 4 1783 ± 373 

Gemma 3 27B 
Few-Shot-CoT 

2056 ± 531 2015 ± 530 41 ± 2 1638 ± 391 
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Darüber hinaus wurden praxisnähere „Naive“-Varianten getestet, die nicht nur 
drei Felder, sondern ein vollständiges JSON mit mehreren Rechnungsfeldern ext-
rahieren. Diese Varianten wurden ergänzend einbezogen, um die Übertragbarkeit 
in realistischeren Anwendungsszenarien zu prüfen. Der breitere Extraktionsum-
fang führt erwartungsgemäß zu höheren Completion-Tokens und deutlich länge-
ren Laufzeiten. So bewegen sich die durchschnittlichen Antwortzeiten hier zwi-
schen etwa 6 und 12 Sekunden, mit Mittelwerten von rund 9 bis 10 Sekunden. 
Für automatisierte Back-End-Prozesse mag dies noch akzeptabel sein, im Kontext 
direkter Nutzerinteraktionen, etwa über einen Call‑to‑Action in einem B2C‑Front-
end, kann eine solche Verzögerung jedoch als problematisch empfunden werden. 
Bereits Wartezeiten über 1 Sekunde unterbrechen den Arbeitsfluss, und bei mehr 
als 10 Sekunden geht die Nutzeraufmerksamkeit deutlich zurück [95]. 

Tabelle 8.6 Token- und Laufzeitstatistiken der praxisnäheren Naive-Strategien 

8.5 Grenzen des rein textbasierten Ansatzes 

Die durchgeführten Experimente zeigen, dass LLMs bei Dokumenten mit einge-
betteten Textlayern eine sehr hohe Extraktionsgenauigkeit erreichen. Die Leis-
tungsfähigkeit hängt jedoch vollständig von der Qualität dieser Einbettungen ab. 
Im Rahmen des Versuchsaufbaus wurden daher ausschließlich Dokumente mit 
vorhandenem Textlayer untersucht, während reine Bild-PDFs ohne eingebetteten 
Text sowie Dateien mit problematischen Codierungen (z. B. CID oder Unicode-
Ersatzzeichen, vgl. Abschnitt 7.1.2) vorab ausgeschlossen wurden. Die Ergeb-
nisse beziehen sich somit unmittelbar auf Szenarien, in denen ein Textlayer vor-
handen ist, unabhängig davon, ob dieser aus der Originalquelle oder durch vor-
gelagerte OCR-Verfahren erzeugt wurde. 

 

Diese Abhängigkeit wurde insbesondere in den Fehlermustern in Abschnitt 8.2 
sichtbar, wo fehlerhafte oder inkonsistente Einbettungen die Modellleistung direkt 

Modell / Stra-
tegie 

Avg Tokens 
(± σ) 

Avg Prompt 
Tokens (± σ) 

Avg Completion 
Tokens (± σ) 

Avg Dauer ms 
(± σ) 

GPT-4.1 Naive 1748 ± 714 1160 ± 468 589 ± 307 5862 ± 4514 
Claude 3 Sonnet 
Naive 

2157 ± 846 1512 ± 655 646 ± 278 9270 ± 3635 

Gemma 3 27B 
Naive 

1780 ± 773 1271 ± 530 510 ± 298 11961 ± 7583 
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beeinträchtigten. Fehlerhafte oder manipulierte Textlayer können von den Mo-
dellen in einem rein textbasierten Ansatz nicht zuverlässig erkannt oder validiert 
werden, wodurch die Robustheit des Ansatzes begrenzt bleibt. Neben unbeab-
sichtigten Fehlern eröffnet dies auch ein mögliches Angriffsszenario, da gezielt 
veränderte Einbettungen die Extraktionsergebnisse verfälschen können 

 
Abbildung 8.12 Vergleich der Modellleistung bei identischer Strategie mit pdfplumber- und Tes-
seract-Extraktion (vollständige Tabelle im Anhang 3.7) 

Die Ergebnisse zeigen den Einfluss der Extraktionsmethode auf die Genauigkeit 
bei identischer Strategie (Claude 3 Sonnet Few-Shot CoT). Während die Text-
layer-basierte Extraktion mit pdfplumber in allen Metriken nahezu perfekte Er-
gebnisse erzielt (!"#$%&&	())*$%)+ 99,77%), liegen die Werte bei der OCR-ba-
sierten Extraktion mit Tesseract deutlich niedriger (!"#$%&&	())*$%)+ 97,87%). 

Beide Verfahren wurden jedoch in einer einfachen Implementierung verwendet 
und repräsentieren damit nicht zwingend die bestmögliche Leistungsfähigkeit der 
Verfahren. Der Vergleich verdeutlicht jedoch die enge Kopplung der LLM-Leistung 
an die Qualität des zugrunde liegenden Textlayers. 

Für ein produktives Setup empfiehlt es sich daher, die LLM-Auswertung durch ein 
zusätzliches optisches Verfahren abzusichern, um die Plausibilität der eingebet-
teten Inhalte zu prüfen und fehlerhafte Texte frühzeitig zu erkennen. Langfristig 
könnten multimodale Modelle, die direkt auf visuelle Eingaben zugreifen, diese 
Lücke schließen und die Abhängigkeit von Drittanbieter-Textlayern weiter redu-
zieren. Die Ergebnisse verdeutlichen somit nicht nur die aktuellen Grenzen rein 
textbasierter Verfahren, sondern liefern auch einen klaren Ausblick auf notwen-
dige Weiterentwicklungen. 
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9 Diskussion und Handlungsempfehlungen 

Die in dieser Arbeit erzielten Ergebnisse bilden eine fundierte Grundlage für die 
Beantwortung der eingangs formulierten Forschungsfragen und deren Einord-
nung in den praktischen Kontext der aifinyo AG. Ziel dieses Kapitels ist es, die 
zentralen Schlussfolgerungen aus den Experimenten zu verdichten, ihre Relevanz 
für den produktiven Einsatz einzuordnen und den Geltungsbereich der Ergebnisse 
transparent abzugrenzen. Zunächst werden die Forschungsfragen anhand der fi-
nalen Evaluationsergebnisse beantwortet. Darauf folgt eine Reflexion der geprüf-
ten Hypothesen und eine Darstellung der methodischen, datenspezifischen und 
technischen Limitationen. Abschließend werden Empfehlungen für den prakti-
schen Einsatz LLM basierter Rechnungsdatenextraktion bei der aifinyo AG formu-
liert. 

9.1  Beantwortung der Forschungsfragen 

Zum Abschluss der Arbeit lassen sich die eingangs formulierten Forschungsfragen 
auf Grundlage der durchgeführten Experimente und Analysen beantworten. 

 

F1: Wie präzise extrahieren Large Language Models strukturierte Da-
ten aus maschinenlesbaren Rechnungs-PDFs? 

Die finale Evaluation zeigt, dass aktuelle LLMs strukturierte Rechnungsdaten mit 
sehr hoher Präzision extrahieren können. Schon mit einfachen Strategien wie 
dem Baseline Prompt wurden hohe Genauigkeitswerte erreicht. Gemma 3 27B IT 
erzielte 94,93% ,-)*.#/0	())*$%)+ und GPT-4.1 erreichte 96,85%. Mit opti-

mierten Strategien konnte die Leistung weiter gesteigert werden. Claude 3 Son-
net erzielte im Few Shot CoT Ansatz 99,36% ,-)*.#/0	())*$%)+, GPT-4.1 im 
Few Shot Setup 99,02% und Gemma 3 27B IT im Few Shot Ansatz 97,61%. Diese 
Werte verdeutlichen, dass LLMs auch bei variierenden Rechnungsformaten kon-
sistente und valide Ergebnisse liefern. Einschränkungen zeigten sich vor allem in 
Fällen mit fehlerhaften Textlayern oder unklaren Rechnungsfeldern, was den Ein-
fluss der Eingabequalität unterstreicht. 
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F2: Inwiefern übertreffen LLMs die durch das Rechnungs-OCR von Gini 
erreichten Ergebnisse, und welche quantifizierbaren Performance-Un-
terschiede lassen sich empirisch nachweisen? 

Die Ergebnisse belegen eine deutliche Überlegenheit der getesteten LLMs gegen-
über der bestehenden OCR-Lösung von Gini. Während Gini eine 
,-)*.#/0	())*$%)+ von 87,24% erzielte, lagen die getesteten LLMs je nach 
Strategie deutlich darüber. Bereits die Baseline Prompts von Claude 3 Sonnet, 
GPT-4.1 und Gemma 3 27B IT erreichten Werte zwischen 94,93% und 96,85%. 
In den besten Konfigurationen mit Claude 3 Sonnet im Few-Shot CoT Ansatz und 
GPT-4.1 im Few-Shot Setup stieg die ,-)*.#/0	())*$%)+ auf über 99%. Zudem 

zeigten die LLMs eine höhere Robustheit gegenüber typischen OCR-Fehlern, ins-
besondere bei Beträgen und Datumsangaben, wodurch die Wahrscheinlichkeit 
einer vollständig fehlerfreien Dokumentextraktion signifikant erhöht wurde. 

9.2 Reflexion der Hypothesen 

Die in Abschnitt 8.3 geprüften Hypothesen zeigen, dass LLMs in den durchge-
führten Experimenten eine sehr hohe Genauigkeit in der Rechnungsdatenextrak-
tion erreichen konnten. Besonders deutlich wird dies daran, dass bei der besten 
getesteten Strategie nahezu alle Kreditoren fehlerfrei verarbeitet wurden. Dies 
verdeutlicht, dass die Modelle nicht nur einzelne Felder zuverlässig erkennen, 
sondern auch über komplette Layouts hinweg konsistente Ergebnisse erzielen 
können. Gleichzeitig bestätigte sich die Annahme einer robusten Generalisierbar-
keit, da die Modelle auch auf unabhängigen Evaluationsdaten ein stabiles Leis-
tungsbild aufwiesen. Damit wird sichtbar, dass LLMs unter den untersuchten Be-
dingungen ein belastbares Werkzeug für die Verarbeitung variabler 
Eingabeformate darstellen. 

Die Analyse macht zugleich deutlich, dass die Leistungsfähigkeit nicht uneinge-
schränkt verallgemeinert werden kann. Die Untersuchung basierte ausschließlich 
auf historischen Rechnungsdaten der aifinyo AG und nutzte Gini als Vergleichs-
system. Aussagen zu anderen OCR-Verfahren oder Datendomänen lassen sich 
daraus nicht ableiten. Vor diesem Hintergrund sind die Ergebnisse mit 
,-)*.#/0	())*$%)+ Werten von über 99% als ein sehr positives, aber zugleich 
kontextgebundenes Resultat zu verstehen, das für die aifinyo AG unmittelbar re-
levant ist, in anderen Szenarien aber überprüft werden müsste. 
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9.3  Limitationen der Untersuchung  

Die Aussagekraft dieser Arbeit ist methodisch dadurch begrenzt, dass nur eine 
Auswahl an großen Sprachmodellen untersucht wurde, die alle auf klassischen 
Decoder only Transformer Architekturen basieren. Andere Ansätze wie Encoder 
Decoder Modelle oder spezialisierte „Document Understanding Architekturen“ wie 
LayoutLM wurden nicht berücksichtigt und könnten in ähnlichen Tests zu abwei-
chenden Ergebnissen führen. Auch der Effekt von zusätzlichem Feintuning wurde 
nicht untersucht. Darüber hinaus beschränkte sich die Leistungsbewertung auf 
drei zentrale Rechnungsfelder, nämlich Rechnungsnummer, Rechnungsdatum 
und Rechnungsbetrag. Aussagen zur Extraktion weiterer Felder wie Positionen, 
Steuern oder Zahlungsbedingungen lassen sich aus dieser Untersuchung nicht 
ableiten. 

Eine weitere Einschränkung betrifft die verwendeten Daten, die ausschließlich 
aus dem Kundenbestand der aifinyo AG stammen. Dadurch sind bestimmte Bran-
chen und Rechnungsformate unterrepräsentiert, sodass die Ergebnisse und 
Prompts nicht ohne Weiteres auf andere Unternehmenskontexte übertragbar 
sind. 

Darüber hinaus ist bei LLMs grundsätzlich das Risiko von Halluzinationen zu be-
rücksichtigen. Auch wenn in den Tests überwiegend konsistente Ergebnisse er-
zielt wurden, können Modelle in Einzelfällen fehlerhafte oder erfundene Inhalte 
generieren, die sich nicht unmittelbar aus den Eingabedaten ableiten lassen.  

Schließlich ist auch die technische Umsetzung als Einschränkung zu betrachten. 
Die Evaluationsplattform wurde im Rahmen dieser Masterarbeit von einer Einzel-
person entwickelt. Sie ermöglicht eine systematische und reproduzierbare Aus-
wertung, ist jedoch prototypisch und nicht mit dem Reifegrad produktiver Sys-
teme vergleichbar. Aspekte wie API-Limits, Laufzeiten, Integration in bestehende 
Systeme oder eine detaillierte Kostenbewertung konnten nur eingeschränkt be-
rücksichtigt werden und müssten in einer späteren Umsetzung gesondert unter-
sucht werden. 
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9.4  Empfehlung für die aifinyo AG 

Die Ergebnisse dieser Arbeit zeigen, dass der Einsatz von LLMs in der Rechnungs-
datenextraktion ein erhebliches Potenzial bietet. Die getesteten Strategien er-
reichten in den besten Konfigurationen ,-)*.#/0	())*$%)+ Werte von über 
99%, womit eine deutliche Steigerung der Datenqualität gegenüber der bisheri-
gen OCR-Lösung möglich erscheint. Für den praktischen Einsatz bietet sich ein 
API-gestützter Einsatz der Modelle an, bei dem die Instruktionen über Prompts 
definiert werden. Dieses Vorgehen erlaubt eine schnelle Integration und macht 
den Austausch von Modellen vergleichsweise unkompliziert. Geschlossene Mo-
delle überzeugen durch hohe Leistungsfähigkeit und kalkulierbare Kosten, wäh-
rend offene Modelle insbesondere dann interessant werden, wenn Datenschutz-
anforderungen oder der Betrieb auf eigener Infrastruktur im Vordergrund stehen. 

Neben den in dieser Arbeit untersuchten Kernfeldern sollten für eine produktive 
Nutzung auch weitere Rechnungsinformationen wie Positionen, Mehrwertsteuer 
oder Debitoren berücksichtigt werden. Erste Ergebnisse deuten darauf hin, dass 
stärker zerlegte Extraktionsansätze, also spezifische Prompts für einzelne Felder, 
hier Vorteile bieten können. Gleichzeitig bleibt die Abhängigkeit von eingebette-
ten Textlayern eine zentrale Herausforderung. Ein rein auf Textembeddings ba-
sierender Ansatz ist zudem risikobehaftet, da fehlerhafte oder gezielt manipu-
lierte Eingaben von den Modellen nicht zuverlässig erkannt werden können. Für 
einen produktiven Einsatz wären daher zusätzliche Absicherungen notwendig. 

Darüber hinaus haben explorative Untersuchungen gezeigt, dass Strategien wie 
Few-Shot mit layoutspezifischen Beispielen, hybride Verfahren aus eingebettetem 
Text und OCR oder Consensus Ansätze mit mehreren Modellen weiteres Potenzial 
bergen. Diese Ansätze wurden nur in kleinem Umfang geprüft und werden im 
Ausblick in Abschnitt 10 gesondert aufgegriffen. 
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10 Ausblick und Potentiale 

Die Ergebnisse dieser Arbeit zeigen, dass LLMs bereits heute eine sehr hohe Prä-
zision in der Rechnungsdatenextraktion erreichen. Gleichzeitig deuten erste zu-
sätzliche Experimente darauf hin, dass über die getesteten Strategien hinaus wei-
tere methodische und technologische Ansätze Potenzial besitzen. Diese 
Ergebnisse sind jedoch lediglich explorativer Natur und wurden nicht im Rahmen 
des in Abschnitt 5.6 beschriebenen standardisierten Versuchsablaufs evaluiert. 
Der Ausblick skizziert diese Potenziale und zeigt, welche Forschungs- und Ent-
wicklungsrichtungen sich für die aifinyo AG und für die allgemeine Weiterentwick-
lung der Dokumentenextraktion ergeben. 

10.1 Methodische Erweiterungen 

Ein Ansatz mit hohem Potenzial ist die Nutzung von Consensus-Strategien. Erste 
Tests auf dem Developmentdatensatz kombinieren zwei Strategien, nämlich die 
als beste getestete Few-Shot-CoT-Variante mit Claude 3 Sonnet und einen einfa-
chen CoT-Ansatz mit GPT-4.1, der ausschließlich Bilder der Rechnungen über ein 
Vision-Modell verarbeitet. Diese Kombination reduziert die Fehlerrate deutlich 
und erreicht eine ,-)*.#/0	())*$%)+ von bis zu 99,8% (Abbildung 10.1). 

In einem weiteren Versuch werden zehn unterschiedliche Strategien miteinander 
kombiniert, darunter Varianten mit Claude, GPT und Gemma-3 sowie Verfahren 
auf Basis von Text, OCR, Vision und Vision+Text. Dieses erweiterte Ensemble 
erzielt auf dem Developmentdatensatz ein Ergebnis mit nur einem Fehler, sodass 
2575 von 2576 Consensus-Ergebnissen korrekt sind. Die Ergebnisse deuten da-
rauf hin, dass die Kombination unterschiedlicher Ansätze zu einer weiteren Ver-
besserung führen kann. Allerdings geht ein solcher Ansatz zulasten der Abde-
ckung, da nur Dokumente berücksichtigt werden, bei denen alle Strategien 
dasselbe Ergebnis liefern, und ist aufgrund des vielfach höheren Ressourcenver-
brauchs in der Praxis nur eingeschränkt realistisch. Zudem stellt eine höhere Ge-
nauigkeit keine zwingende Folge dar, sondern lediglich eine mögliche Option bei 
übereinstimmenden Vorhersagen. 
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Abbildung 10.1 Ergebnisse der Consensus-Strategie auf dem Developmentdatensatz 

Für den praktischen Einsatz sind Few-Shot-Ansätze mit layout-spezifischen Bei-
spielen besonders interessant. Erste Experimente zeigen, dass die Bereitstellung 
einer einzigen annotierten Rechnung für wiederkehrende Kreditorenlayouts die 
Extraktion nachfolgender Dokumente deutlich stabilisiert (Abbildung 10.2). 

Ein Fallbeispiel verdeutlicht diesen Effekt. Die eingebetteten Daten eines Kredi-
torenlayouts weisen massive OCR-Fehler auf, etwa „195t22“ anstelle von 
„195/22“ bei der Rechnungsnummer oder „11j02022“ anstelle von „11.10.2022“ 
beim Rechnungsdatum. Nahezu alle 16 Rechnungen dieses Kreditors enthalten 
vergleichbare Fehler. Ohne spezifisches Few-Shot-Prompt erreicht die beste ge-
testete Strategie auf den 15 Rechnungen lediglich eine ,-)*.#/0	())*$%)+ von 
13,33%. Wird jedoch eine der fehlerhaften Rechnungen als Beispiel genutzt und 
den Modellen als Few-Shot-Prompt zur Verfügung gestellt, steigt die 
,-)*.#/0	())*$%)+ auf bis zu 100%. Dieses Ergebnis ist bemerkenswert, weil 
es darauf hindeutet, dass LLMs in der Lage sind, systematische OCR-Fehler zu 
erkennen und proaktiv zu korrigieren. 

 
Abbildung 10.2 Ergebnisse der Few-Shot-Extraktion für ein einzelnes Kreditorenlayout 
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10.2 Technologische Perspektiven 

Neben methodischen Erweiterungen gewinnen technologische Ansätze an Bedeu-
tung. Multimodale Vision-Modelle, die Text- und Layoutebene gemeinsam verar-
beiten, können langfristig die Abhängigkeit von extern erzeugten Textlayern re-
duzieren. Erste Vergleiche zeigen, dass die reine Vision-Strategie schwächer 
abschneidet als die textbasierte Variante, während die Kombination von Text- 
und Vision-Eingaben insgesamt die stabilsten Ergebnisse liefert (Tabelle 10.1). 

Auch hybride Verfahren, die unterschiedliche Eingabequellen wie OCR, Embed-
dings oder Vision kombinieren, zeigen Potenzial. Erste Versuche deuten darauf 
hin, dass durch den Abgleich verschiedener Quellen typische Problemfälle besser 
adressiert werden können. 
Modell Strategie !"#$%&&	()) *+)-.#10		

()) 
,-./#$		
()) 

*%0#	()) (.+-10		
()) 

GPT-4.1 Text + Vision 98.83% 96.90% 98.03% 99.93% 98.53% 
GPT-4.1 Standard CoT 98.74% 96.63% 98.00% 99. 93% 98.30% 
GPT-4.1 Only Vision 97.68% 94.66% 97.43% 98.87% 96.73% 

Tabelle 10.1 Vergleich Vision-basierter und hybrider Verfahren im Evaluationslauf 

10.3 Forschungsperspektiven 

Die in den Abschnitten 10.1 und 10.2 skizzierten Erweiterungen verdeutlichen, 
dass das Potenzial von LLMs für die Rechnungsdatenextraktion längst nicht aus-
geschöpft ist. Für die Forschung ergeben sich daraus mehrere Anschlussmöglich-
keiten. Ein zentraler Aspekt ist die Evaluation zukünftiger LLM-Generationen im 
Hinblick auf Genauigkeit, Robustheit und Kosten. Ebenso stellt sich die Frage, wie 
stabil die Modelle gegenüber Bias und systematischen Verzerrungen in Rech-
nungsdaten reagieren und welche Verfahren geeignet sind, solche Effekte zu re-
duzieren. 

Darüber hinaus eröffnet sich das Feld des Feintunings und der Domänenadaption. 
Mit spezialisierten Trainingsdaten könnten zusätzliche Rechnungsfelder wie Posi-
tionen, Mehrwertsteuer oder Debitoren gezielt adressiert werden, die in dieser 
Arbeit nicht systematisch untersucht wurden. Damit ergeben sich konkrete An-
satzpunkte, um die Leistungsfähigkeit der Modelle über die hier getesteten Kern-
felder hinaus weiter zu steigern und ihre Eignung für einen produktiven Einsatz 
zu vertiefen. 
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11 Fazit  

Die vorliegende Arbeit untersuchte die Leistungsfähigkeit von Large Language 
Models zur Extraktion strukturierter Rechnungsdaten aus maschinenlesbaren 
PDF-Dokumenten im Anwendungsumfeld der aifinyo AG. Ausgangspunkt war die 
Hypothese, dass LLMs klassische OCR-basierte Verfahren in Präzision und Ro-
bustheit übertreffen können und damit eine zuverlässigere Basis für automati-
sierte Finanzprozesse schaffen. Im Rahmen systematischer Experimente wurden 
verschiedene Modelle, Parameterkonfigurationen und Prompting-Strategien  
evaluiert, ihre Ergebnisse miteinander verglichen und Potenziale für den produk-
tiven Einsatz abgeleitet. 

11.1 Erkenntnisse 

Die durchgeführten Untersuchungen liefern mehrere zentrale Erkenntnisse: 

1. Deutliche Leistungssteigerung gegenüber OCR: Alle getesteten 
LLMs erzielen eine höhere Genauigkeit bei der Extraktion von Rechnungs-
nummern, Beträgen und Datumsangaben als das bestehende Gini-OCR-
System. Die Gini-Ergebnisse basieren dabei auf historisch von Gini prozes-
sierten Rechnungsdaten und erreichen auf Dokumentebene lediglich eine 
Genauigkeit von 87,24%. Selbst die weniger leistungsstarken LLM-Varian-
ten liegen darüber. Spitzenmodelle wie Claude 3 Sonnet erzielen in der 
besten Strategie 99,36% ,-)*.#/0	())*$%)+. 

2. Modellgröße und Architektur beeinflussen Ergebnisqualität: 
Proprietäre Modelle (Claude 3 Sonnet, GPT-4.1) liefern konstant die besten 
Resultate in allen Metriken. Open-Source-Modelle wie Gemma 3 27B-IT 
erreichen diese Werte zwar nicht vollständig, liegen mit bis zu 97,61% 
,-)*.#/0	())*$%)+ in der Few-Shot-Strategie jedoch deutlich über den 
aus historischen Daten ermittelten Ergebnissen des Gini-OCR, was ihre 
Eignung für datenschutzkritische Szenarien unterstreicht. 
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3. Prompting-Strategien sind entscheidend: Zero-Shot-Prompts liefern 
zwar solide Basisergebnisse, erst optimierte Few-Shot- und CoT-Strategien 
ermöglichen eine deutlich höhere Genauigkeit. Die optimale Strategie er-
weist sich jedoch als modellabhängig, sodass keine universelle „beste“ Lö-
sung identifiziert werden kann. 

4. Datenqualität als begrenzender Faktor: Trotz hoher Modellleistungen 
lassen sich Fehler aus der vorgelagerten OCR- oder PDF-Textgewinnung 
nicht vollständig kompensieren. Unsaubere oder fehlerhafte OCR-Embed-
dings im Textlayer können die Extraktionsqualität erheblich beeinträchti-
gen. Multimodale Ansätze mit direkter Vision-Verarbeitung haben hier ten-
denziell Vorteile, da sie weniger stark von der Qualität des Textlayers 
abhängig sind. 

Diese Erkenntnisse bestätigen, dass LLMs nicht nur als Ersatz, sondern als quali-
tative Verbesserung gegenüber klassischen OCR-Lösungen eingesetzt werden 
können, wenn die Modellwahl und das Prompting sorgfältig auf die jeweiligen 
Daten und Anforderungen abgestimmt werden. Dabei ist zu berücksichtigen, dass 
die Gini-Ergebnisse aus historischen Produktionsdaten stammen und somit nicht 
auf exakt derselben Evaluationsgrundlage wie die LLMs beruhen, sondern als Re-
ferenz für die bisherige Systemleistung dienen. 

11.2 Praktische Relevanz und Business Impact 

Die Ergebnisse dieser Arbeit haben unmittelbare Relevanz für die Automatisie-
rung von Rechnungsprozessen in der aifinyo AG und vergleichbaren Finanzdienst-
leistungsunternehmen: 

- Qualitätsverbesserung: Die signifikant höhere Extraktionsgenauigkeit 
reduziert manuelle Nachbearbeitung, senkt Fehlerraten und verkürzt 
Durchlaufzeiten im Rechnungsmanagementprozess. 

- Kosteneffizienz: Weniger manuelle Korrekturen und geringere Fehler-
folgekosten können zu substantiellen Einsparungen führen, selbst wenn 
die initialen API-Kosten für proprietäre Modelle berücksichtigt werden. 

- Skalierbarkeit: LLMs ermöglichen eine robuste Verarbeitung auch hete-
rogener und komplexer Belege, was insbesondere bei der Erschließung 
neuer Kundensegmente mit stark variierenden Rechnungsformaten Vor-
teile bietet. 
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- Zukunftspotenzial: Die erprobten Strategien und die entwickelte Evalu-
ationsplattform schaffen eine Basis für den Einsatz weiterentwickelter Mo-
delle (z. B. multimodale LLMs), wodurch sich der Automatisierungsgrad 
künftig weiter steigern lässt. 

Die Arbeit legt damit nahe, dass LLM-basierte Extraktionslösungen nicht nur die 
aktuelle OCR-Lösung von Gini ersetzen, sondern darüber hinaus ein zentrales 
Element für die zukünftige Automatisierungsstrategie von aifinyo darstellen könn-
ten. Voraussetzung dafür sind eine saubere Trennung von Rechnungs- und Pro-
zessinformationen, ein kontinuierliches Qualitätsmonitoring, die laufende Evalu-
ierung neuer Modellgenerationen auf Basis der in dieser Arbeit entwickelten 
Methodik sowie ergänzende Kontrollmechanismen, die Manipulationsrisiken in 
hybriden Szenarien frühzeitig erkennen und abfedern. 
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Anhang 1: Prompts 
Anhang 1.1: JSON-Struktur einer Rechnung 
 
 1. { 
 2.   "invoiceNumber": "String", 
 3.   "invoiceDate": " String ", 
 4.   "invoiceAmount": "Float", 
 5.   "invoiceAmountUst": [ 
 6.     { 
 7.       "rate": "String", 
 8.       "amount": "Float" 
 9.     } 
10.   ], 
11.   "targetDays": "Integer", 
12.   "assignmentNote": "Array|null", 
13.   "taxExemptionReason": "String|null", 
14.   "sender": { 
15.     "name": "String", 
16.     "street": "String", 
17.     "streetNumber": "String|null", 
18.     "zip": "String", 
19.     "city": "String", 
20.     "tradeRegisterNumber": "String|null", 
21.     "taxNumber": "String|null", 
22.     "UstID": "String|null" 
23.   }, 
24.   "recipient": { 
25.     "extern_id": "String|null", 
26.     "name": "String", 
27.     "poBox": "String|null", 
28.     "street": "String", 
29.     "streetNumber": "String|null", 
30.     "zip": "String", 
31.     "city": "String" 
32.   } 
33. } 
34.   
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Anhang 1.2: Ausgangsprompt 
 
System 
You are an AI that extracts invoice information and returns it as valid JSON. 
- Do NOT include markdown formatting such as ```json. 
- Do NOT include extra text or explanations. 
- invoiceAmount is always Brutto 
- Respond with raw JSON only. Dates like invoiceDate must be iso date strings (YYYY-MM-DD) 
- You must validate the datatypes. This will be validated. String must be always a String 
and Double always a Double. 
 
User 
Extract the following invoice details and return ONLY based on the following JSON struc-
ture: 
 
{ \"invoiceNumber\": \"String\",  
  \"invoiceDate\": \"Date\",  
  \"invoiceAmount\": \"Double\",  
  \"invoiceAmountUst\": [ { \"rate\": \"19%\", \"amount\": \"Double\" } ],  
  \"targetDays\": \"Integer\",  
  \"assignmentNote\": \"String\",  
  \"taxExemptionReason\": \"String\",  
  \"sender\": {  
 \"name\": \"String\",  
 \"street\": \"String\",  
 \"streetNumber\": \"String\",  
 \"zip\": \"String\",  
 \"city\": \"String\",  
 \"tradeRegisterNumber\": \"String\",  
 \"taxNumber\": \"String\",  
 \"UstID\": \"String\" },  
  \"recipient\": {  
 \"extern_id\": \"String\",  
 \"name\": \"String\",  
 \"poBox\": \"String\",  
 \"street\": \"String\",  
 \"streetNumber\": \"String\",  
 \"zip\": \"String\",  
 \"city\": \"String\" },  
  \"bankDetails\": { \"iban\": \"String\", \"bic\": \"String\" },  
  \"positions\": [ {  
 \"index\": \"Integer\",  
 \"itemCount\": \"Double\",  
 \"description\": \"String\",  
 \"itemAmount\": \"Double\",  
 \"amount\": \"Double\",  
 \"currency\": \"String\" } ] } 
 
Process the following extracted text and return ONLY the JSON: 
 
$text 
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Anhang 1.3: Verkürzter Prompt 
 
System 
 
You are an AI that extracts invoice information and returns it as valid JSON. 
- Do NOT include markdown formatting such as ```json. 
- Do NOT include extra text or explanations. 
- invoiceAmount is always Brutto 
- Respond with raw JSON only. Dates like invoiceDate must be iso date strings (YYYY-MM-DD) 
- You must validate the datatypes. This will be validated. String must be always a String 
and Double always a  
 
User 
 
Extract the following invoice details and return ONLY based on the following JSON struc-
ture: {  
  \"invoiceNumber\": \"String\",  
  \"invoiceDate\": \"Date\",  
  \"invoiceAmount\": \"Double\"} ] } 
 
Process the following extracted text and return ONLY the JSON: $text 
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Anhang 2: SQL Querys 
Anhang 2.1: Trigger Function 
 
Trigger 
  1. create function trigger_recalculate_comparisons() returns trigger 
  2.     language plpgsql 
  3. as 
  4. $$ 
  5. BEGIN 
  6.     IF TG_OP = 'INSERT' OR (TG_OP = 'UPDATE' AND (NEW.content)::text IS DISTINCT FROM 
(OLD.content)::text) THEN 
  7.         IF NEW.extraction_type::text IN ('llm', 'gini', 'infact') THEN 
  8.             PERFORM recalculate_extraction_comparison(NEW.id); 
  9.         END IF; 
 10.     END IF; 
 11.   
 12.     RETURN NEW; 
 13. END; 
 14. $$; 
 15.   
 16. alter function trigger_recalculate_comparisons() owner to postgres; 

 
Function recalculate_document_extraction_comparisons 
 1. create function recalculate_document_extraction_comparisons(document_id_param integer) 
returns void 
 2.     language plpgsql 
 3. as 
 4. $$ 
 5.       DECLARE 
 6.           extraction_record RECORD; 
 7.       BEGIN 
 8.           -- Recalculate comparisons for all LLM and GINI extractions for this 
document 
 9.           FOR extraction_record IN  
10.               SELECT id FROM extractions  
11.               WHERE document_id = document_id_param  
12.                 AND extraction_type IN ('LLM'::extractiontype, 'GINI'::extractiontype) 
13.           LOOP 
14.               PERFORM recalculate_extraction_comparison(extraction_record.id); 
15.           END LOOP; 
16.   
17.           -- Recalculate comparisons for all INFACT extractions for this document 
18.           FOR extraction_record IN  
19.               SELECT id FROM extractions  
20.               WHERE document_id = document_id_param  
21.                 AND extraction_type = 'INFACT'::extractiontype 
22.           LOOP 
23.               PERFORM recalculate_extraction_comparison(extraction_record.id); 
24.           END LOOP; 
25.       END; 
26.       $$; 
27.   
28. alter function recalculate_document_extraction_comparisons(integer) owner to postgres; 
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Function recalculate_extraction_comparison 
 1. create function public.recalculate_extraction_comparison(extraction_id integer) re-
turns void 
 2.     language plpgsql 
 3. as 
 4. $$ 
 5.       DECLARE 
 6.           extraction_row RECORD; 
 7.           other RECORD; 
 8.           cmp_id INTEGER; 
 9.   
10.           llm_invoice_number TEXT; 
11.           infact_invoice_number TEXT; 
12.           llm_invoice_amount TEXT; 
13.           infact_invoice_amount TEXT; 
14.           llm_invoice_date TEXT; 
15.           infact_invoice_date TEXT; 
16.       BEGIN 
17.           SELECT * INTO extraction_row FROM extractions WHERE id = extraction_id; 
18.   
19.           -- LLM oder GINI gegen INFACT vergleichen 
20.           IF extraction_row.extraction_type IN ('LLM'::extractiontype, 'GINI'::extrac-
tiontype) THEN 
21.               SELECT * INTO other FROM extractions 
22.               WHERE document_id = extraction_row.document_id 
23.                 AND extraction_type = 'INFACT'::extractiontype 
24.               ORDER BY created_at DESC 
25.               LIMIT 1; 
26.   
27.               IF other.id IS NULL THEN RETURN; END IF; 
28.   
29.               IF jsonb_typeof(extraction_row.content::jsonb) = 'array' THEN 
30.                   llm_invoice_number := extraction_row.content::jsonb -> 0 ->> 'in-
voiceNumber'; 
31.                   llm_invoice_amount := try_parse_float(extraction_row.content::jsonb 
-> 0 ->> 'invoiceAmount')::TEXT; 
32.                   llm_invoice_date   := extraction_row.content::jsonb -> 0 ->> 'in-
voiceDate'; 
33.               ELSE 
34.                   llm_invoice_number := extraction_row.content::jsonb ->> 'invoiceNum-
ber'; 
35.                   llm_invoice_amount := try_parse_float(extraction_row.content::jsonb 
->> 'invoiceAmount')::TEXT; 
36.                   llm_invoice_date   := extraction_row.content::jsonb ->> 'invoiceDa-
te'; 
37.               END IF; 
38.   
39.               IF jsonb_typeof(other.content::jsonb) = 'array' THEN 
40.                   infact_invoice_number := other.content::jsonb -> 0 ->> 'invoiceNum-
ber'; 
41.                   infact_invoice_amount := try_parse_float(other.content::jsonb -> 0 -
>> 'invoiceAmount')::TEXT; 
42.                   infact_invoice_date   := other.content::jsonb -> 0 ->> 'invoiceDa-
te'; 
43.               ELSE 
44.                   infact_invoice_number := other.content::jsonb ->> 'invoiceNumber'; 
45.                   infact_invoice_amount := try_parse_float(other.content::jsonb ->> 
'invoiceAmount')::TEXT; 
46.                   infact_invoice_date   := other.content::jsonb ->> 'invoiceDate'; 
47.               END IF; 
48.   
49.               SELECT id INTO cmp_id FROM extraction_comparisons 
50.               WHERE llm_extraction_id = extraction_row.id AND infact_extraction_id = 
other.id; 
51.   
52.               IF cmp_id IS NOT NULL THEN 
53.                   UPDATE extraction_comparisons SET 
54.                       invoice_number_match = (llm_invoice_number = infact_invoice_num-
ber), 
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55.                       invoice_number_llm_value = llm_invoice_number, 
56.                       invoice_number_infact_value = infact_invoice_number, 
57.                       invoice_amount_match = (llm_invoice_amount = infact_in-
voice_amount), 
58.                       invoice_amount_llm_value = llm_invoice_amount, 
59.                       invoice_amount_infact_value = infact_invoice_amount, 
60.                       invoice_date_match = (llm_invoice_date = infact_invoice_date), 
61.                       invoice_date_llm_value = llm_invoice_date, 
62.                       invoice_date_infact_value = infact_invoice_date, 
63.                       updated_at = NOW() 
64.                   WHERE id = cmp_id; 
65.               ELSE 
66.                   INSERT INTO extraction_comparisons ( 
67.                       llm_extraction_id, infact_extraction_id, 
68.                       invoice_number_match, invoice_number_llm_value, invoice_num-
ber_infact_value, 
69.                       invoice_amount_match, invoice_amount_llm_value, in-
voice_amount_infact_value, 
70.                       invoice_date_match, invoice_date_llm_value, invoice_date_in-
fact_value, 
71.                       created_at, updated_at 
72.                   ) VALUES ( 
73.                       extraction_row.id, other.id, 
74.                       (llm_invoice_number = infact_invoice_number), llm_invoice_num-
ber, infact_invoice_number, 
75.                       (llm_invoice_amount = infact_invoice_amount), llm_in-
voice_amount, infact_invoice_amount, 
76.                       (llm_invoice_date = infact_invoice_date), llm_invoice_date, in-
fact_invoice_date, 
77.                       NOW(), NOW() 
78.                   ); 
79.               END IF; 
80.   
81.           ELSIF extraction_row.extraction_type = 'INFACT'::extractiontype THEN 
82.               FOR other IN 
83.                   SELECT * FROM extractions 
84.                   WHERE document_id = extraction_row.document_id 
85.                     AND extraction_type IN ('LLM'::extractiontype, 'GINI'::extraction-
type) 
86.               LOOP 
87.                   PERFORM recalculate_extraction_comparison(other.id); 
88.               END LOOP; 
89.           END IF; 
90.       END; 
91.       $$; 
92.   
93. alter function public.recalculate_extraction_comparison(integer) owner to postgres; 
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Anhang 2.2: prediction_results_polished View 
 
 1. create materialized view public.prediction_results_polished as 
 2. SELECT documents.id, 
 3.        e_t.content -> 'text'::text                                         AS text, 
 4.        (e_g.content -> 'invoiceNumber'::text)::text                        AS gini_in-
voicenumber, 
 5.        (e_i.content -> 'invoiceNumber'::text)::text                        AS in-
fact_invoicenumber, 
 6.        CASE 
 7.            WHEN ((e_g.content -> 'invoiceNumber'::text)::text) = ((e_i.content -> 'in-
voiceNumber'::text)::text) 
 8.                THEN 'GOOD'::text 
 9.            ELSE 'BAD'::text 
10.            END                                                             AS num-
ber_prediction, 
11.        (e_g.content -> 'invoiceAmount'::text)::text                        AS gini_in-
voiceamount, 
12.        (e_i.content -> 'invoiceAmount'::text)::text                        AS in-
fact_invoiceamount, 
13.        CASE 
14.            WHEN (e_g.content ->> 'invoiceAmount'::text) ~ '^\d+(\.\d+)?$'::text AND 
15.                 (e_i.content ->> 'invoiceAmount'::text) ~ '^\d+(\.\d+)?$'::text AND 
16.                 (e_g.content ->> 'invoiceAmount'::text) <> 'null'::text AND 
17.                 (((e_g.content ->> 'invoiceAmount'::text)::double precision)::text) = 
18.                 (((e_i.content ->> 'invoiceAmount'::text)::double precision)::text) 
THEN 'GOOD'::text 
19.            ELSE 'BAD'::text 
20.            END                                                             AS 
amount_prediction, 
21.        e_g.content -> 'invoiceDate'::text                                  AS gini_in-
voicedate, 
22.        e_i.content -> 'invoiceDate'::text                                  AS in-
fact_invoicedate, 
23.        CASE 
24.            WHEN ((e_g.content -> 'invoiceDate'::text)::text) = ((e_i.content -> 'in-
voiceDate'::text)::text) THEN 'GOOD'::text 
25.            ELSE 'BAD'::text 
26.            END                                                             AS 
date_prediction, 
27.        e_g.content -> 'targetDays'::text                                   AS 
gini_targetdays, 
28.        e_i.content -> 'targetDays'::text                                   AS in-
fact_targetdays, 
29.        CASE 
30.            WHEN ((e_g.content -> 'targetDays'::text)::text) = ((e_i.content -> 'tar-
getDays'::text)::text) THEN 'GOOD'::text 
31.            ELSE 'BAD'::text 
32.            END                                                             AS target-
days_prediction, 
33.        e_g.content -> 'invoiceAmountUst'::text                             AS gini_in-
voiceamountust, 
34.        ((e_i.content -> 'invoiceAmountUst'::text) -> 0) ->> 'amount'::text AS in-
fact_invoiceamountust, 
35.        CASE 
36.            WHEN ((e_g.content -> 'invoiceAmountUst'::text)::text) = 
37.                 (((e_i.content -> 'invoiceAmountUst'::text) -> 0) ->> 'amount'::text) 
THEN 'GOOD'::text 
38.            ELSE 'BAD'::text 
39.            END                                                             AS ust_pre-
diction, 
40.        (e_g.content -> 'sender'::text) ->> 'name'::text                    AS 
gini_sender_name, 
41.        (e_i.content -> 'sender'::text) ->> 'name'::text                    AS in-
fact_sender_name, 
42.        CASE 
43.            WHEN ((e_g.content -> 'sender'::text) ->> 'name'::text) = ((e_i.content -> 
'sender'::text) ->> 'name'::text) 
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44.                THEN 'GOOD'::text 
45.            ELSE 'BAD'::text 
46.            END                                                             AS sen-
der_prediction 
47. FROM documents 
48.          JOIN extractions e_g ON documents.id = e_g.document_id AND e_g.extrac-
tion_type = 'GINI'::extractiontype 
49.          JOIN extractions e_t 
50.               ON documents.id = e_t.document_id AND e_t.extraction_type = 
'EXTRACT_TEXT'::extractiontype AND 
51.                  length((e_t.content -> 'text'::text)::text) > 25 AND 
52.                  ((e_t.content -> 'text'::text)::text) !~~ '(cid:%'::text AND 
53.                  ((e_t.content -> 'text'::text)::text) !~~ '%(cid:%'::text AND 
54.                  (length((e_t.content -> 'text'::text)::text) - 
55.                   length(replace((e_t.content -> 'text'::text)::text, '\ufffd'::text, 
''::text))) < 30 AND 
56.                  ((e_t.content -> 'text'::text)::text) !~~ '%tundenzettel%'::text AND 
57.                  ((e_t.content -> 'text'::text)::text) !~~ '%Negatives Abrechnungs-
konto%'::text AND 
58.                  length((e_t.content -> 'text'::text)::text) < 10000 
59.          JOIN extractions e_i ON documents.id = e_i.document_id AND e_i.extrac-
tion_type = 'INFACT'::extractiontype 
60. WHERE ((e_i.content -> 'sender'::text) ->> 'name'::text) IS NOT NULL 
61.   AND ((e_i.content -> 'sender'::text) ->> 'name'::text) !~~ 'aifinyo%'::text; 
62.   
63. alter materialized view public.prediction_results_polished owner to postgres; 
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Anhang 2.3: Developmentset Materialized View 
 
  1. create materialized view public.test_set_3k_complex as 
  2. WITH eval_set_ids AS (SELECT eval_set_10k.id 
  3.                       FROM eval_set_10k), 
  4.      base AS (SELECT prediction_results_polished2.id, 
  5.                      prediction_results_polished2.text, 
  6.                      prediction_results_polished2.gini_invoicenumber, 
  7.                      prediction_results_polished2.infact_invoicenumber, 
  8.                      prediction_results_polished2.number_prediction, 
  9.                      prediction_results_polished2.gini_invoiceamount, 
 10.                      prediction_results_polished2.infact_invoiceamount, 
 11.                      prediction_results_polished2.amount_prediction, 
 12.                      prediction_results_polished2.gini_invoicedate, 
 13.                      prediction_results_polished2.infact_invoicedate, 
 14.                      prediction_results_polished2.date_prediction, 
 15.                      prediction_results_polished2.gini_targetdays, 
 16.                      prediction_results_polished2.infact_targetdays, 
 17.                      prediction_results_polished2.targetdays_prediction, 
 18.                      prediction_results_polished2.gini_invoiceamountust, 
 19.                      prediction_results_polished2.infact_invoiceamountust, 
 20.                      prediction_results_polished2.ust_prediction, 
 21.                      prediction_results_polished2.gini_sender_name, 
 22.                      prediction_results_polished2.infact_sender_name, 
 23.                      prediction_results_polished2.sender_prediction, 
 24.                      row_number() OVER () AS internal_order 
 25.               FROM prediction_results_polished2 
 26.               WHERE NOT (prediction_results_polished2.id IN (SELECT eval_set_ids.id 
 27.                                                              FROM eval_set_ids))), 
 28.      number_good AS (SELECT base.id, 
 29.                             'number_good'::text AS label, 
 30.                             base.internal_order 
 31.                      FROM base 
 32.                      WHERE base.number_prediction = 'GOOD'::text), 
 33.      number_bad AS (SELECT base.id, 
 34.                            'number_bad'::text AS label, 
 35.                            base.internal_order 
 36.                     FROM base 
 37.                     WHERE base.number_prediction = 'BAD'::text), 
 38.      amount_good AS (SELECT base.id, 
 39.                             'amount_good'::text AS label, 
 40.                             base.internal_order 
 41.                      FROM base 
 42.                      WHERE base.amount_prediction = 'GOOD'::text), 
 43.      amount_bad AS (SELECT base.id, 
 44.                            'amount_bad'::text AS label, 
 45.                            base.internal_order 
 46.                     FROM base 
 47.                     WHERE base.amount_prediction = 'BAD'::text), 
 48.      date_good AS (SELECT base.id, 
 49.                           'date_good'::text AS label, 
 50.                           base.internal_order 
 51.                    FROM base 
 52.                    WHERE base.date_prediction = 'GOOD'::text), 
 53.      date_bad AS (SELECT base.id, 
 54.                          'date_bad'::text AS label, 
 55.                          base.internal_order 
 56.                   FROM base 
 57.                   WHERE base.date_prediction = 'BAD'::text), 
 58.      unioned AS (SELECT number_good.id, 
 59.                         number_good.label, 
 60.                         number_good.internal_order 
 61.                  FROM number_good 
 62.                  UNION ALL 
 63.                  SELECT number_bad.id, 
 64.                         number_bad.label, 
 65.                         number_bad.internal_order 
 66.                  FROM number_bad 
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 67.                  UNION ALL 
 68.                  SELECT amount_good.id, 
 69.                         amount_good.label, 
 70.                         amount_good.internal_order 
 71.                  FROM amount_good 
 72.                  UNION ALL 
 73.                  SELECT amount_bad.id, 
 74.                         amount_bad.label, 
 75.                         amount_bad.internal_order 
 76.                  FROM amount_bad 
 77.                  UNION ALL 
 78.                  SELECT date_good.id, 
 79.                         date_good.label, 
 80.                         date_good.internal_order 
 81.                  FROM date_good 
 82.                  UNION ALL 
 83.                  SELECT date_bad.id, 
 84.                         date_bad.label, 
 85.                         date_bad.internal_order 
 86.                  FROM date_bad), 
 87.      prioritized_ids AS (SELECT unioned.id, 
 88.                                 unioned.label, 
 89.                                 unioned.internal_order, 
 90.                                 row_number() 
 91.                                 OVER (PARTITION BY unioned.id ORDER BY unioned.inter-
nal_order) AS priority_rank 
 92.                          FROM unioned), 
 93.      joined_with_sender AS (SELECT pr_1.id, 
 94.                                    pr_1.text, 
 95.                                    pr_1.gini_invoicenumber, 
 96.                                    pr_1.infact_invoicenumber, 
 97.                                    pr_1.number_prediction, 
 98.                                    pr_1.gini_invoiceamount, 
 99.                                    pr_1.infact_invoiceamount, 
100.                                    pr_1.amount_prediction, 
101.                                    pr_1.gini_invoicedate, 
102.                                    pr_1.infact_invoicedate, 
103.                                    pr_1.date_prediction, 
104.                                    pr_1.gini_targetdays, 
105.                                    pr_1.infact_targetdays, 
106.                                    pr_1.targetdays_prediction, 
107.                                    pr_1.gini_invoiceamountust, 
108.                                    pr_1.infact_invoiceamountust, 
109.                                    pr_1.ust_prediction, 
110.                                    pr_1.gini_sender_name, 
111.                                    pr_1.infact_sender_name, 
112.                                    pr_1.sender_prediction, 
113.                                    pi.label, 
114.                                    pi.internal_order 
115.                             FROM prioritized_ids pi 
116.                                      JOIN prediction_results_polished2 pr_1 ON 
pr_1.id = pi.id 
117.                             WHERE pi.priority_rank = 1), 
118.      sender_diverse AS (SELECT t.id, 
119.                                t.text, 
120.                                t.gini_invoicenumber, 
121.                                t.infact_invoicenumber, 
122.                                t.number_prediction, 
123.                                t.gini_invoiceamount, 
124.                                t.infact_invoiceamount, 
125.                                t.amount_prediction, 
126.                                t.gini_invoicedate, 
127.                                t.infact_invoicedate, 
128.                                t.date_prediction, 
129.                                t.gini_targetdays, 
130.                                t.infact_targetdays, 
131.                                t.targetdays_prediction, 
132.                                t.gini_invoiceamountust, 
133.                                t.infact_invoiceamountust, 
134.                                t.ust_prediction, 
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135.                                t.gini_sender_name, 
136.                                t.infact_sender_name, 
137.                                t.sender_prediction, 
138.                                t.label, 
139.                                t.internal_order, 
140.                                t.sender_rank 
141.                         FROM (SELECT joined_with_sender.id, 
142.                                      joined_with_sender.text, 
143.                                      joined_with_sender.gini_invoicenumber, 
144.                                      joined_with_sender.infact_invoicenumber, 
145.                                      joined_with_sender.number_prediction, 
146.                                      joined_with_sender.gini_invoiceamount, 
147.                                      joined_with_sender.infact_invoiceamount, 
148.                                      joined_with_sender.amount_prediction, 
149.                                      joined_with_sender.gini_invoicedate, 
150.                                      joined_with_sender.infact_invoicedate, 
151.                                      joined_with_sender.date_prediction, 
152.                                      joined_with_sender.gini_targetdays, 
153.                                      joined_with_sender.infact_targetdays, 
154.                                      joined_with_sender.targetdays_prediction, 
155.                                      joined_with_sender.gini_invoiceamountust, 
156.                                      joined_with_sender.infact_invoiceamountust, 
157.                                      joined_with_sender.ust_prediction, 
158.                                      joined_with_sender.gini_sender_name, 
159.                                      joined_with_sender.infact_sender_name, 
160.                                      joined_with_sender.sender_prediction, 
161.                                      joined_with_sender.label, 
162.                                      joined_with_sender.internal_order, 
163.                                      row_number() 
164.                                      OVER (PARTITION BY joined_with_sender.label, jo-
ined_with_sender.sender_prediction ORDER BY joined_with_sender.internal_order) AS sen-
der_rank 
165.                               FROM joined_with_sender) t 
166.                         WHERE t.sender_rank = 1), 
167.      fallback_fill AS (SELECT t.id, 
168.                               t.text, 
169.                               t.gini_invoicenumber, 
170.                               t.infact_invoicenumber, 
171.                               t.number_prediction, 
172.                               t.gini_invoiceamount, 
173.                               t.infact_invoiceamount, 
174.                               t.amount_prediction, 
175.                               t.gini_invoicedate, 
176.                               t.infact_invoicedate, 
177.                               t.date_prediction, 
178.                               t.gini_targetdays, 
179.                               t.infact_targetdays, 
180.                               t.targetdays_prediction, 
181.                               t.gini_invoiceamountust, 
182.                               t.infact_invoiceamountust, 
183.                               t.ust_prediction, 
184.                               t.gini_sender_name, 
185.                               t.infact_sender_name, 
186.                               t.sender_prediction, 
187.                               t.label, 
188.                               t.internal_order, 
189.                               t.group_rank 
190.                        FROM (SELECT joined_with_sender.id, 
191.                                     joined_with_sender.text, 
192.                                     joined_with_sender.gini_invoicenumber, 
193.                                     joined_with_sender.infact_invoicenumber, 
194.                                     joined_with_sender.number_prediction, 
195.                                     joined_with_sender.gini_invoiceamount, 
196.                                     joined_with_sender.infact_invoiceamount, 
197.                                     joined_with_sender.amount_prediction, 
198.                                     joined_with_sender.gini_invoicedate, 
199.                                     joined_with_sender.infact_invoicedate, 
200.                                     joined_with_sender.date_prediction, 
201.                                     joined_with_sender.gini_targetdays, 
202.                                     joined_with_sender.infact_targetdays, 
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203.                                     joined_with_sender.targetdays_prediction, 
204.                                     joined_with_sender.gini_invoiceamountust, 
205.                                     joined_with_sender.infact_invoiceamountust, 
206.                                     joined_with_sender.ust_prediction, 
207.                                     joined_with_sender.gini_sender_name, 
208.                                     joined_with_sender.infact_sender_name, 
209.                                     joined_with_sender.sender_prediction, 
210.                                     joined_with_sender.label, 
211.                                     joined_with_sender.internal_order, 
212.                                     row_number() 
213.                                     OVER (PARTITION BY joined_with_sender.label ORDER 
BY joined_with_sender.internal_order) AS group_rank 
214.                              FROM joined_with_sender 
215.                              WHERE NOT (joined_with_sender.id IN (SELECT sender_di-
verse.id 
216.                                                                   FROM sender_di-
verse))) t 
217.                        WHERE t.group_rank <= 500), 
218.      limited_ids AS (SELECT sender_diverse.id 
219.                      FROM sender_diverse 
220.                      UNION 
221.                      SELECT fallback_fill.id 
222.                      FROM fallback_fill), 
223.      random_fill AS (SELECT prediction_results_polished2.id 
224.                      FROM prediction_results_polished2 
225.                      WHERE NOT (prediction_results_polished2.id IN (SELECT 
eval_set_10k.id 
226.                                                                     FROM 
eval_set_10k)) 
227.                        AND NOT (prediction_results_polished2.id IN (SELECT limi-
ted_ids.id 
228.                                                                     FROM limi-
ted_ids)) 
229.                      ORDER BY (random()) 
230.                      LIMIT 1000), 
231.      final_3000 AS (SELECT combined.id 
232.                     FROM (SELECT limited_ids.id 
233.                           FROM limited_ids 
234.                           UNION ALL 
235.                           SELECT random_fill.id 
236.                           FROM random_fill) combined 
237.                     ORDER BY (random()) 
238.                     LIMIT 3000) 
239. SELECT DISTINCT ON (pr.id) pr.id, 
240.                            pr.text, 
241.                            pr.gini_invoicenumber, 
242.                            pr.infact_invoicenumber, 
243.                            pr.number_prediction, 
244.                            pr.gini_invoiceamount, 
245.                            pr.infact_invoiceamount, 
246.                            pr.amount_prediction, 
247.                            pr.gini_invoicedate, 
248.                            pr.infact_invoicedate, 
249.                            pr.date_prediction, 
250.                            pr.gini_targetdays, 
251.                            pr.infact_targetdays, 
252.                            pr.targetdays_prediction, 
253.                            pr.gini_invoiceamountust, 
254.                            pr.infact_invoiceamountust, 
255.                            pr.ust_prediction, 
256.                            pr.gini_sender_name, 
257.                            pr.infact_sender_name, 
258.                            pr.sender_prediction 
259. FROM prediction_results_polished2 pr 
260.          JOIN final_3000 f ON pr.id = f.id 
261. ORDER BY pr.id; 
262.   
263. alter materialized view public.test_set_3k_complex owner to postgres; 
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Anhang 3: Tabellen 
Anhang 3.1: Parsing-Analyse 
 
Strategie Direct JSON  Array Un-

wrap  
Regex Fall-
back  

Text Fall-
back 

Parse Failu-
res 

Gemma 3 1B 
Naive 

89,8% 0% 0,7% 0,2% 9,3% 

Gemma 3 4B 
Naive 

98,9% 0% 0,1% 0% 1% 

Gemma 3 
12B Naive 

99,9% 0% 0% 0% 0,1% 

Gemma 3 
27B Naive 

99,4% 0% 0% 0% 0,6% 

GPT Naive 99,9% 0% 0% 0% 0,1% 
Claude Naive 99,1% 0% 0% 0% 0,9% 
Gemma 3 4B 
eval 

59% 40,9% 0% 0% 0,1% 

Gemma 3 
27B eval 

20% 79,7% 0% 0% 0,3% 

GPT eval 100% 0% 0,2% 0% 0% 
Claude eval 100% 0% 0% 0% 0% 

 

Anhang 3.2: Ausgangs-Performance mit Baseline 
Prompt 
 
Model !"#$%&&	()) *+)-.#10		

()) 
,-./#$		
()) 

*%0#	()) (.+-10		
()) 

GPT-4.1 97,70% 94,07% 97,83% 98,80% 96,47% 
Claude 3 Sonnet 
(20250219) 

97,35% 93,87% 98,40% 98,67% 94,97% 

Gemma 3 27B-IT 97,12% 93,00% 97,97% 99,10% 94,30% 
Gemma 3 12B-IT 96,04% 89,47% 96,63% 97,23% 94,27% 
Gemma 3 4B-IT 82,68% 63,03% 81,30% 88,50% 78,23% 
Gemma 3 1B-IT 54,25% 24,97% 46,72% 69,46% 45,58% 
Gini 84,01% 57,87% 85,70% 83,17% 83,17% 
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Anhang 3.3: Accuracy und Laufzeit – Baseline vs re-
duzierter Prompt 
 
Model Felder Accuracy Duration 

AVG 
Completion 
Token AVG 

gemma-3-4b-
it 

Abbildung 5.1 82,68% 15,51 s 
1,6 s – 
91,55 s 
σ: 8,96 s 

598 
225 - 8191 
σ: 379 

gemma-3-
27b-it 

Abbildung 5.1 94,7% 14,13 s 
5,18 s – 
118,31 s σ: 
10,47 s 

596 
200 - 4726 
σ: 412 

gemma-3-4b-
it 

Rechnungsnummer, 
Rechnungsdatum,  
Rechnungsbetrag 

91,12% 0,45 s 
0,32 s – 
9,75 s  
σ: 0,31 s 

58 
48 - 1529 
σ: 48 

gemma-3-
27b-it 

Rechnungsnummer, 
Rechnungsdatum,  
Rechnungsbetrag 

96,8% 1,73 s 
0,88 s – 
49,87 s  
σ: 0,61 s 

54 
37 - 199 
σ: 8 

 
Anhang 3.4: Ergebnisübersicht der Zero-Shot-Opti-
mierungsstrategien  
 
Modell Strategie !"#$%&&	()) *+)-.#10		

()) 
,-./#$		
()) 

*%0#	()) (.+-10		
()) 

Claude 3 
Sonnet 

restriktiv 98,62% 96,37% 99,37% 99,43% 97,07% 
einfach 97,60% 93,27% 99,53% 96,47% 96,80% 
CoT 99,52% 98,60% 99,37% 99,73% 99,47% 

GPT-4.1 restriktiv 96,98% 92,57% 97,13% 97,87% 95,93% 
einfach 98,02% 94,63% 98,20% 99,20% 96,67% 
CoT 98,74% 96,63% 98,00% 99,93% 98,30% 

Gemma 3 
27B 

restriktiv 96,51% 91,37% 97,27% 97,37% 94,90% 
einfach 95,62% 88,97% 97,03% 95,00% 94,83% 
CoT 98,07% 94,87% 98,40% 99,57% 96,23% 
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Anhang 3.5: Ergebnisübersicht der Few-Shot-Opti-
mierungsstrategien  
 
Modell Strategie !"#$%&&	()) *+)-.#10		

()) 
,-./#$		
()) 

*%0#	()) (.+-10		
()) 

Claude 3 
Sonnet 

Classic 99,52% 98,57% 99,57% 99,70% 99,30% 
CoT 99,70% 99,10% 99,73% 99,63% 99,73% 

GPT-4.1 Classic 99,22% 97,77% 99,13% 99,83% 98,70% 
CoT 99,24% 97,87% 98,83% 98,90% 99,00% 

Gemma 3 
27B 

Classic 98,55% 95,73% 99,07% 99,67% 96,90% 
CoT 98,23% 95,10% 98,63% 99,57% 96,50% 
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Anhang 3.6: Ergebnisübersicht der Evaluationsphase 
 
Modell Strategie !"#$%&&	()) *+)-.#10		

()) 
,-./#$		
()) 

*%0#	()) (.+-10		
()) 

Claude 3 
Sonnet 

Few-Shot 99,71% 99,21% 99,53% 99,79% 99,82% 
Few-
Shot CoT 

99,76% 99,36% 99,59% 99,83% 99,87% 

Zero-Shot 
CoT 

99,67% 99,11% 99,36% 99,82% 99,84% 

einfach 98,62% 95,97% 99,37% 97,24% 99,26% 
Baseline-
Prompt 

97,60% 96,40% 97,66% 98,04% 97,11% 

GPT-4.1 Few-
Shot 

99,64% 99,02% 99,49% 99,67% 99,76% 

Few-Shot 
CoT 

99,38% 98,34% 99,09% 99,66% 99,40% 

Zero-Shot 
CoT 

99,06% 97,42% 98,16% 99,66% 99,37% 

einfach 99,44% 98,46% 99,33% 99,68% 99,32% 
Baseline-
Prompt 

98,38% 96,85% 98,21% 98,83% 98,10% 

Gemma 3 
27B-IT 

Few-
Shot 

99,13% 97,61% 98,84% 99,68% 98,87% 

Few-Shot 
CoT 

98,58% 95,96% 98,66% 99,65% 97,43% 

Zero-Shot 
CoT 

98,68% 96,33% 98,80% 99,52% 97,72% 

einfach 98,00% 94,28% 98,64% 96,64% 98,72% 
Baseline-
Prompt 

96,74% 94,93% 96,17% 97,34% 96,71% 

Gini 95,53% 87,24% 96,72% 93,37% 96,51% 
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Anhang 3.7: Vergleich der Modellleistung bei identi-
scher Strategie mit pdfplumber- und Tesseract-Ex-
traktion 
 
Model !"#$%&&	()) *+)-.#10	()) ,-./#$		

()) 
*%0#	()) (.+-10		

()) 
Few-Shot-CoT 
Claude 3 Sonnet 
PDFPlumber 

99,77% 99,37% 99,59% 99,84% 99,87% 

Few-Shot-CoT 
Claude 3 Sonnet 
Teseract 

97,87% 94,43% 95,62% 98,98% 99,01% 
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